2016届高考数学(理)5年高考真题备考试题库:第7章 第2节 空间几何体的表面积与体积

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2016届高考数学(理)5年高考真题备考试题库:第7章 第2节 空间几何体的表面积与体积

‎2010~2014年高考真题备选题库 第7章 立体几何 第2节 空间几何体的表面积与体积 ‎1.(2014陕西,5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为(  )‎ A. B.4π C.2π D. 解析:因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=×13=.故选D.‎ 答案:D ‎2.(2014山东,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则=________.‎ 解析:如图,设点C到平面PAB的距离为h,三角形PAB的面积为S,则V2=Sh,V1=VE-ADB=×S×h=Sh,所以=.‎ ‎3.(2014江苏,5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是________.‎ 解析:设甲、乙两个圆柱的底面半径分别是r1,r2,母线长分别是l1,l2.则由=可得=.又两个圆柱的侧面积相等,即2πr‎1l1=2πr‎2l2,则==,所以==×=.‎ 答案: ‎4.(2013新课标全国Ⅰ,5分)如图,有一个水平放置的透明无盖的正方体容器,容器高‎8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为‎6 cm,如果不计容器的厚度,则球的体积为(  )‎ A. cm3           B. cm3 ‎ C. cm3 D. cm3‎ 解析:本题考查正方体和球组成的组合体、球的体积的计算,意在考查考生的空间想象能力、转化化归能力以及运用体积公式进行计算的能力.解题时,先根据已知条件分析出正方体的上底面到球心的距离为(R-2) cm(其中R为球半径),再利用球半径、球心距和截面圆半径构成的直角三角形求出球半径,进而计算出球的体积.设球半径为R cm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为‎4 cm,球心到截面的距离为(R-2) cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=πR3=π×53= cm3,选择A.‎ 答案:A ‎5.(2013辽宁,5分)已知直三棱柱ABCA1B‎1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为(  )‎ A. B.2 C. D.3 解析:本题主要考查多面体、球等基本概念以及如何根据组合体中的位置关系进行准确计算,意在考查考生的空间想象能力、运算求解能力以及转化思想.如图,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA= =.‎ 答案:C ‎6.(2012新课标全国,5分)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为(  )‎ A.           B. C. D. 解析:在直角三角形ASC中,AC=1,∠SAC=90°,SC=2,所以SA==;同理SB=.过A点作SC的垂线交SC于D点,连接DB,因△SAC≌△SBC,故BD⊥SC,故SC⊥平面ABD,且平面ABD为等腰三角形,因∠ASC=30°,故AD=SA=,则△ABD的面积为×1× =,则三棱锥的体积为××2=.‎ 答案:A ‎7.(2012江西,5分)如右图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0
查看更多

相关文章