2013届高考数学一轮 命题及其关系、充分条件与必要条件
2013届高考一轮 命题及其关系、充分条件与必要条件
一、选择题
1、若集合A={1,sin},B={},则””是”{}”的( )
A.充要条件 B.必要不充分条件
C.充分不必要条件 D.既不充分也不必要条件
2、命题p:={};命题q:若A={1,2},B={x|},则.下列关于p、q的真假性判断正确的是 ( )
A.p假q假 B.p真q假
C.p假q真 D.p真q真
3、命题”若a>b,则a-1>b-1”的否命题是( )
A.若a>b,则
B.若a>b,则a-1
0,则方程有实数根”的逆命题是 .
11、方程R)有相异的两个同号实根的充要条件是 .
12、设p、q为两个简单命题,若”p且q”为真命题,则”p或q”为 ,”非p”为 (填”真命题”或”假命题”).
三、解答题
13、已知p:方程有两个不等的负根;q:方程x+1=0无实根.若p或q为真,p且q为假,求m的取值范围.
14、设有两个命题p,q,其中p:关于x的不等式(a-1)x+>0的解集是R;q:f(x)=log是减函数,且p∨q为真命题,求实数a的取值范围.
15、已知函数f(x)在上是增函数,a、R,对命题:”若则f(-b)”.写出逆命题、逆否命题,判断真假,并证明你的结论.
以下是答案
一、选择题
1、C
解析:{},但{}不能推出故选C.
2、C
解析:命题p显然为假;由命题q可得B={,{1},{2},{1,2}},∴即q为真.
3、C
解析:命题”若a>b,则a-1>b-1”的否命题是:”若则”.故选C.
4、 C
解析:若p∧q为假命题,则只需p,q至少有一个为假命题即可.故选C.
5、 B
解析:当△ABC为等边三角形时,显然
当a时,max{}min{}
此时但△ABC不为等边三角形.故选B.
6、 A
解析:”tanx=1”的充要条件为”x=kZ)”,而”x=2kZ)”是”x=kZ)”的充分不必要条件,所以”x=2kZ)”是”tanx=1”成立的充分不必要条件.
7、C
解析:易知是真命题,而对:y′lnln2=ln当时又ln2>0,所以y′函数单调递增;同理得当时,函数单调递减,故是假命题.由此可知真假假真.
8、 D
解析:∵逆命题是以原命题的结论为条件,条件为结论的命题,
∴这个命题的逆命题为:若|a|=|b|,则a=-b.
二、填空题
9、
解析:命题p为真,即,得00
11、
解析:设方程的两个根为.由题意知,方程若有两同号根,则必为两个正根,
故只需 .
12、真命题 假命题
三、解答题
13、 解:若方程有两个不等的负根,则解得m>2,即p:m>2.
若方程x+1=0无实根,则
解得1
查看更多