2018版高考数学(理)(人教)大一轮复习文档讲义:第十二章12-6离散型随机变量的均值与方差、正态分布

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018版高考数学(理)(人教)大一轮复习文档讲义:第十二章12-6离散型随机变量的均值与方差、正态分布

‎ ‎ ‎1.离散型随机变量的均值与方差 一般地,若离散型随机变量X的分布列为 X x1‎ x2‎ ‎…‎ xi ‎…‎ xn P p1‎ p2‎ ‎…‎ pi ‎…‎ pn ‎(1)均值 称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.‎ ‎(2)方差 称D(X)= (xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,并称其算术平方根为随机变量X的标准差.‎ ‎2.均值与方差的性质 ‎(1)E(aX+b)=aE(X)+b.‎ ‎(2)D(aX+b)=a2D(X).(a,b为常数)‎ ‎3.两点分布与二项分布的均值、方差 ‎(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).‎ ‎(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).‎ ‎4.正态分布 ‎(1)正态曲线:函数φμ,σ(x)=,x∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.‎ ‎(2)正态曲线的性质 ‎①曲线位于x轴上方,与x轴不相交;‎ ‎②曲线是单峰的,它关于直线x=μ对称;‎ ‎③曲线在x=μ处达到峰值;‎ ‎④曲线与x轴之间的面积为1;‎ ‎⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;‎ ‎⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.‎ ‎(3)正态分布的定义及表示 一般地,如果对于任何实数a,b (a110)==0.2,‎ ‎∴该班学生数学成绩在110分以上的人数为0.2×50=10.‎ 题型一 离散型随机变量的均值、方差 命题点1 求离散型随机变量的均值、方差 例1 (2016·山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是,每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:‎ ‎(1)“星队”至少猜对3个成语的概率;‎ ‎(2)“星队”两轮得分之和X的分布列和均值E(Χ).‎ 解 (1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,‎ 记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,‎ 记事件E:“‘星队’至少猜对3个成语”.‎ 由题意,得E=ABCD+BCD+ACD+ABD+ABC,‎ 由事件的独立性与互斥性,‎ P(E)=P(ABCD)+P(BCD)+P(ACD)+P(ABD)+P(ABC)‎ ‎=P(A)P(B)P(C)P(D)+P()P(B)P(C)P(D)+P(A)P()P(C)P(D)+P(A)P(B)P()P(D)+P(A)P(B)P(C)P()‎ ‎=×××+2× =.‎ 所以“星队”至少猜对3个成语的概率为.‎ ‎(2)由题意,得随机变量X可能的取值为0,1,2,3,4,6.‎ 由事件的独立性与互斥性,得 P(X=0)=×××=,‎ P(X=1)=2×==,‎ P(X=2)=×××+×××+×××+×××=,‎ P(X=3)=×××+×××==,‎ P(X=4)=2×==,‎ P(X=6)=×××==.‎ 可得随机变量X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎6‎ P 所以均值E(X)=0×+1×+2×+3×+4×+6×=.‎ 命题点2 已知离散型随机变量的均值与方差,求参数值 例2 设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.‎ ‎(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;‎ ‎(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,D(η)=,求a∶b∶c.‎ 解 (1)由题意得ξ=2,3,4,5,6,‎ 故P(ξ=2)==,P(ξ=3)==,‎ P(ξ=4)==,P(ξ=5)==,‎ P(ξ=6)==.‎ 所以ξ的分布列为 ξ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ P ‎(2)由题意知η的分布列为 η ‎1‎ ‎2‎ ‎3‎ P 所以E(η)=++=,‎ D(η)=2·+2·+2·=,化简得 解得a=3c,b=2c,故a∶b∶c=3∶2∶1.‎ 思维升华 离散型随机变量的均值与方差的常见类型及解题策略 ‎(1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布列,然后利用均值、方差公式直接求解.‎ ‎(2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的方程(组),解方程(组)即可求出参数值.‎ ‎(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.‎ ‎ (2015·四川)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.‎ ‎(1)求A中学至少有1名学生入选代表队的概率;‎ ‎(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和均值.‎ 解 (1)由题意,参加集训的男、女生各有6名,参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为=.‎ 因此,A中学至少有1名学生入选代表队的概率为 ‎1-=.‎ ‎(2)根据题意,X的可能取值为1,2,3,‎ P(X=1)==,‎ P(X=2)==,‎ P(X=3)==,‎ 所以X的分布列为 X ‎1‎ ‎2‎ ‎3‎ P 因此,X的均值为E(X)=1×P(X=1)+2×P(X=2)+3×P(X=3)=1×+2×+3×=2.‎ 题型二 均值与方差在决策中的应用 例3 (2016·全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:‎ 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.‎ ‎(1)求X的分布列;‎ ‎(2)若要求P(X≤n)≥0.5,确定n的最小值;‎ ‎(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?‎ 解 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而 P(X=16)=0.2×0.2=0.04,‎ P(X=17)=2×0.2×0.4=0.16,‎ P(X=18)=2×0.2×0.2+0.4×0.4=0.24,‎ P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24,‎ P(X=20)=2×0.2×0.4+0.2×0.2=0.2,‎ P(X=21)=2×0.2×0.2=0.08,‎ P(X=22)=0.2×0.2=0.04.‎ 所以X的分布列为 X ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ ‎21‎ ‎22‎ P ‎0.04‎ ‎0.16‎ ‎0.24‎ ‎0.24‎ ‎0.2‎ ‎0.08‎ ‎0.04‎ ‎(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.‎ ‎(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).‎ 当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;‎ 当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.‎ 可知当n=19时所需费用的均值小于n=20时所需费用的均值,故应选n=19.‎ 思维升华 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.‎ ‎ 某投资公司在2016年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:‎ 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为和;‎ 项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为,和.‎ 针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.‎ 解 若按“项目一”投资,设获利为X1万元,则X1的分布列为 X1‎ ‎300‎ ‎-150‎ P ‎∴E(X1)=300×+(-150)×=200.‎ 若按“项目二”投资,设获利X2万元,则X2的分布列为 X2‎ ‎500‎ ‎-300‎ ‎0‎ P ‎∴E(X2)=500×+(-300)×+0×=200.‎ D(X1)=(300-200)2×+(-150-200)2× ‎=35 000,‎ D(X2)=(500-200)2×+(-300-200)2×+(0-200)2×=140 000.‎ 所以E(X1)=E(X2),D(X1)0.5=P(Y≥μ2),故A项错误;‎ 对于B项,因为X的正态分布密度曲线比Y的正态分布密度曲线更“瘦高”,所以σ1<σ2.所以P(X≤σ1)P(η≥2).‎ 从回答对题数的均值考查,两人水平相当;从回答对题数的方差考查,甲较稳定;从至少正确回答2题的概率考查,甲获得通过的可能性大.因此可以判断甲的通过能力较强.[12分]‎ 求离散型随机变量的均值和方差问题的一般步骤:‎ 第一步:确定随机变量的所有可能值;‎ 第二步:求每一个可能值所对应的概率;‎ 第三步:列出离散型随机变量的分布列;‎ 第四步:求均值和方差;‎ 第五步:根据均值、方差、进行判断,并得出结论; (适用于均值、方差的应用问题)‎ 第六步:反思回顾.查看关键点、易错点和答题规范.‎ ‎1.(2016·郑州一模)某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X(单位:分)的均值为(  )‎ A.0.9 B.0.8 C.1.2 D.1.1‎ 答案 A 解析 由题意得X=0,1,2,则 P(X=0)=0.6×0.5=0.3,‎ P(X=1)=0.4×0.5+0.6×0.5=0.5,‎ P(X=2)=0.4×0.5=0.2,‎ ‎∴E(X)=1×0.5+2×0.2=0.9.‎ ‎2.(2017·芜湖月考)若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为(  )‎ A.3×2-2 B.2-4‎ C.3×2-10 D.2-8‎ 答案 C 解析 由题意知 解得 ‎∴P(X=1)=C××(1-)11==3×2-10.‎ ‎3.设随机变量X~N(μ,σ2),且X落在区间(-3,-1)内的概率和落在区间(1,3)内的概率相等,若P(X>2)=p,则P(02)=p,∴P(-2E(3X2),‎ 所以他们都选择方案甲进行抽奖时,累计得分的均值较大.‎ 方法二 (1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响.‎ 记“这2人的累计得分X≤3”为事件A,‎ 则事件A包含有“X=0”,“X=2”,“X=3”三个两两互斥的事件,‎ 因为P(X=0)=(1-)×(1-)=,‎ P(X=2)=×(1-)=,‎ P(X=3)=(1-)×=,‎ 所以P(A)=P(X=0)+P(X=2)+P(X=3)=,‎ 即这2人的累计得分X≤3的概率为.‎ ‎(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:‎ X1‎ ‎0‎ ‎2‎ ‎4‎ P ‎ ‎ X2‎ ‎0‎ ‎3‎ ‎6‎ P 所以E(X1)=0×+2×+4×=,E(X2)=0×+3×+6×=.‎ 因为E(X1)>E(X2),‎ 所以他们都选择方案甲进行抽奖时,累计得分的均值较大.‎ ‎*9.为回馈顾客,某商场拟通过模拟兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.‎ ‎(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:‎ ‎①顾客所获的奖励额为60元的概率;‎ ‎②顾客所获的奖励额的分布列及均值;‎ ‎(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.‎ 解 (1)设顾客所获的奖励额为X.‎ ‎①依题意,得P(X=60)==,‎ 即顾客所获的奖励额为60元的概率为.‎ ‎②依题意,得X的所有可能取值为20,60.‎ P(X=60)=,P(X=20)==,‎ 故X的分布列为 X ‎20‎ ‎60‎ P 所以顾客所获的奖励额的均值为 E(X)=20×+60×=40.‎ ‎(2)根据商场的预算,每个顾客的平均奖励额为60元,‎ 所以,先寻找均值为60元的可能方案.‎ 对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,‎ 因为60元是面值之和的最大值,‎ 所以均值不可能为60元;‎ 如果选择(50,50,50,10)的方案,‎ 因为60元是面值之和的最小值,‎ 所以均值也不可能为60元.‎ 因此可能的方案是(10,10,50,50),记为方案1.‎ 对于面值由20元和40元组成的情况,‎ 同理可排除(20,20,20,40)和(40,40,40,20)的方案,‎ 所以可能的方案是(20,20,40,40),记为方案2.‎ 以下是对两个方案的分析.‎ 对于方案1,即方案(10,10,50,50),‎ 设顾客所获的奖励额为X1,‎ 则X1的分布列为 X1‎ ‎20‎ ‎60‎ ‎100‎ P X1的均值为E(X1)=20×+60×+100×=60,‎ X1的方差为D(X1)=(20-60)2×+(60-60)2×+(100-60)2×=.‎ 对于方案2,即方案(20,20,40,40),‎ 设顾客所获的奖励额为X2,‎ 则X2的分布列为 X2‎ ‎40‎ ‎60‎ ‎80‎ P X2的均值为E(X2)=40×+60×+80×=60,‎ X2的方差为D(X2)=(40-60)2×+(60-60)2×+(80-60)2×=.‎ 由于两种方案的奖励额的均值都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.‎
查看更多

相关文章

您可能关注的文档