- 2021-06-21 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届二轮复习第九章第5节 椭 圆学案(全国通用)
第5节 椭 圆 最新考纲 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质. 知 识 梳 理 1.椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 其数学表达式:集合P={M MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a<c,则集合P为空集. 2.椭圆的标准方程和几何性质 标准方程 +=1 (a>b>0) +=1 (a>b>0) 图形 性质 范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性 对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0), B1(0,-b),B2(0,b) A1(0,-a),A2(0,a), B1(-b,0),B2(b,0) 轴 长轴A1A2的长为2a;短轴B1B2的长为2b 焦距 |F1F2|=2c 离心率 e=∈(0,1) a,b,c的关系 c2=a2-b2 [常用结论与微点提醒] 1.过椭圆的一个焦点且与长轴垂直的弦的长为,称为通径. 2.椭圆离心率e===. 3.应用“点差法”时,要检验直线与圆锥曲线是否相交. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e越大,椭圆就越圆.( ) (3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.( ) (4)+=1(a>b>0)与+=1(a>b>0)的焦距相同.( ) 解析 (1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形. (2)因为e===,所以e越大,则越小,椭圆就越扁. 答案 (1)× (2)× (3)√ (4)√ 2.(2017·浙江卷)椭圆+=1的离心率是( ) A. B. C. D. 解析 由已知,a=3,b=2,则c==,所以e==. 答案 B 3.(2018·张家口调研)椭圆+=1的焦点坐标为( ) A.(±3,0) B.(0,±3) C.(±9,0) D.(0,±9) 解析 根据椭圆方程可得焦点在y轴上,且c2=a2-b2=25-16=9,∴c=3,故焦点坐标为(0,±3),故选B. 答案 B 4.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则椭圆C的方程是( ) A.+=1 B.+=1 C.+=1 D.+=1 解析 由题意知c=1,e==,所以a=2,b2=a2-c2=3.故所求椭圆C的方程为+=1. 答案 D 5.(选修2-1P49A6改编)已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为 . 解析 设P(x,y),由题意知c2=a2-b2=5-4=1, 所以c=1,则F1(-1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y=±1,把y=±1代入+=1,得x=±,又x>0,所以x=,∴P点坐标为或. 答案 或 第1课时 椭圆及其标准方程 考点一 椭圆的定义及其应用 【例1】 (1)(选修2-1P49A7改编)如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是( ) A.椭圆 B.双曲线 C.抛物线 D.圆 (2)椭圆+y2=1上一点P到一个焦点的距离为2,则点P到另一个焦点的距离为( ) A.5 B.6 C.7 D.8 解析 (1)连接QA. 由已知得|QA|=|QP|. 所以|QO|+|QA|=|QO|+|QP|=|OP|=r. 又因为点A在圆内,所以|OA|<|OP|,根据椭圆的定义,点Q的轨迹是以O,A为焦点,r为长轴长的椭圆. (2)由椭圆定义知点P到另一个焦点的距离是10-2=8. 答案 (1)A (2)D 规律方法 1.椭圆定义的应用主要有:判定平面内动点的轨迹是否为椭圆、求椭圆的标准方程和离心率等. 2.椭圆的定义式必须满足2a>|F1F2|. 【训练1】 (1)设定点F1(0,-3),F2(0,3),动点P满足条件|PF1|+|PF2|=a+(a>0),则点P的轨迹是( ) A.椭圆 B.线段 C.不存在 D.椭圆或线段 (2)与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为 . 解析 (1)∵a+≥2=6, 当且仅当a=,即a=3时取等号, ∴当a=3时,|PF1|+|PF2|=6=|F1F2|, 点P的轨迹是线段F1F2; 当a>0,且a≠3时,|PF1|+|PF2|>6=|F1F2|, 点P的轨迹是椭圆. (2)设动圆的半径为r,圆心为P(x,y),则有|PC1|=r+1,|PC2|=9-r. 所以|PC1|+|PC2|=10>|C1C2|, 即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上, 得点P的轨迹方程为+=1. 答案 (1)D (2)+=1 考点二 椭圆的标准方程 【例2】 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,(,),则椭圆的标准方程为 . (2)(一题多解)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方程为 . 解析 (1)设椭圆方程为mx2+ny2=1(m,n>0,m≠n). 由 解得m=,n=. ∴椭圆的标准方程为+=1. (2)法一 椭圆+=1的焦点为(0,-4),(0,4),即c=4. 由椭圆的定义知,2a=+,解得a=2. 由c2=a2-b2可得b2=4. 所以所求椭圆的标准方程为+=1. 法二 设所求椭圆方程为+=1(k<9),将点(,-)的坐标代入可得+=1,解得k=5(k=21舍去),所以所求椭圆的标准方程为+=1. 答案 (1)+=1 (2)+=1 规律方法 1.求椭圆方程的基本方法是待定系数法,先定位,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组. 2.如果焦点位置不确定,可设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),求出m,n的值即可. 【训练2】 (1)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为 . (2)(一题多解)若椭圆经过两点(2,0)和(0,1),则椭圆的标准方程为 . 解析 (1)依题意,设椭圆C:+=1(a>b>0). 过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|=3, ∴点A必在椭圆上, ∴+=1.① 又由c=1,得1+b2=a2.② 由①②联立,得b2=3,a2=4. 故所求椭圆C的方程为+=1. (2)法一 当椭圆的焦点在x轴上时,设所求椭圆的方程为+=1 (a>b>0). ∵椭圆经过两点(2,0),(0,1), ∴ 解得 ∴所求椭圆的标准方程为+y2=1; 当椭圆的焦点在y轴上时,设所求椭圆的方程为+=1 (a>b>0). ∵椭圆经过两点(2,0),(0,1), ∴ 解得 与a>b矛盾,故舍去. 综上可知,所求椭圆的标准方程为+y2=1. 法二 设椭圆方程为mx2+ny2=1 (m>0,n>0,m≠n). ∵椭圆过(2,0)和(0,1)两点, ∴ 解得 综上可知,所求椭圆的标准方程为+y2=1. 答案 (1)+=1 (2)+y2=1 考点三 焦点三角形问题 【例3】 (1)已知椭圆+=1的两个焦点是F1,F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是( ) A. B.2 C.2 D. (2)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°,S△PF1F2=3,则b= . 解析 (1)由椭圆的方程可知a=2,c=,且|PF1|+|PF2|=2a=4,又|PF1|-|PF2|=2,所以|PF1|=3,|PF2|=1.又|F1F2|=2c=2,所以有|PF1|2=|PF2|2+|F1F2|2,即△PF1F2为直角三角形,且∠PF2F1为直角, 所以S△PF1F2=|F1F2 PF2|=×2×1=. (2)由题意得|PF1|+|PF2|=2a,又∠F1PF2=60°, 所以|PF1|2+|PF2|2-2|PF1 PF2|cos 60°=|F1F2|2, 所以(|PF1|+|PF2|)2-3|PF1 PF2|=4c2, 所以3|PF1 PF2|=4a2-4c2=4b2, 所以|PF1 PF2|=b2, 所以S△PF1F2=|PF1 PF2|sin 60°=×b2×= b2=3,所以b=3. 答案 (1)A (2)3 规律方法 1.椭圆上一点P与两焦点F1,F2构成的三角形称为焦点三角形,解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理等知识. 2.椭圆中焦点三角形的周长等于2a+2c. 【训练3】 已知椭圆+=1上一点P与椭圆两焦点F1,F2的连线夹角为直角,则|PF1|·|PF2|= . 解析 依题意a=7,b=2,c==5, |F1F2|=2c=10,由于PF1⊥PF2, 所以由勾股定理得|PF1|2+|PF2|2=|F1F2|2, 即|PF1|2+|PF2|2=100. 又由椭圆定义知|PF1|+|PF2|=2a=14, ∴(|PF1|+|PF2|)2-2|PF1|·|PF2|=100, 即196-2|PF1|·|PF2|=100. 解得|PF1|·|PF2|=48. 答案 48 基础巩固题组 (建议用时:40分钟) 一、选择题 1.椭圆+=1的焦距为2,则m的值等于( ) A.5 B.3 C.5或3 D.8 解析 由题意知椭圆焦距为2,即c=1,又满足关系式a2-b2=c2=1,故当a2=4时,m=b2=3;当b2=4时,m=a2=5. 答案 C 2.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( ) A.椭圆 B.直线 C.圆 D.线段 解析 ∵|MF1|+|MF2|=6=|F1F2|,∴动点M的轨迹是线段. 答案 D 3.设F1,F2是椭圆+=1的焦点,P为椭圆上一点,则△PF1F2的周长为( ) A.16 B.18 C.20 D.不确定 解析 △PF1F2的周长为|PF1|+|PF2|+|F1F2|=2a+2c.因为2a=10,c==4,所以周长为10+8=18. 答案 B 4.“2查看更多