2020届二轮复习圆锥曲线的综合应用教案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020届二轮复习圆锥曲线的综合应用教案(全国通用)

‎2020届二轮复习 圆锥曲线的综合应用 教案(全国通用)‎ 高频考点一 圆锥曲线中的最值、范围 圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.‎ 例1、如图所示,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.‎ ‎(1)求p的值;‎ ‎(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.‎ ‎【变式探究】已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.学-科网 ‎(1)求E的方程;‎ ‎(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.‎ 解:(1)设F(c,0),由条件知,=,得c=.‎ 又=,所以a=2,b2=a2-c2=1.‎ 故E的方程为+y2=1.‎ ‎(2)当l⊥x轴时不合题意,‎ 故设l:y=kx-2,P(x1,y1),Q(x2,y2).‎ 将y=kx-2代入+y2=1,‎ 得(1+4k2)x2-16kx+12=0.‎ 当Δ=16(4k2-3)>0,‎ 即k2>时,x1,2=.‎ 从而|PQ|=|x1-x2|=.‎ 又点O到直线PQ的距离d= .‎ 所以△OPQ的面积S△OPQ=d·|PQ|=.‎ 设=t,则t>0,S△OPQ==.‎ 因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0.‎ 所以当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.‎ 高频考点二  定点、定值问题探究 ‎1.由直线方程确定定点,若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).‎ ‎2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.‎ 例2、已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1. ‎ ‎(1)求椭圆C的方程;‎ ‎(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.‎ ‎(1)解:由题意得解得 所以椭圆C的方程为+y2=1.‎ ‎ (2)证明:由(1)知A(2,0),B(0,1).‎ 设P(x0,y0),则x+4y=4.‎ 当x0≠0时,‎ 直线PA的方程为y=(x-2).‎ 令x=0,得yM=-,‎ 从而|BM|=|1-yM|=.‎ 直线PB的方程为y=x+1.‎ 令y=0得xN=-,‎ 从而|AN|=|2-xN|=.‎ 所以|AN|·|BM|‎ ‎=· ‎= ‎==4.‎ 当x0=0时,y0=-1,|BM|=2,|AN|=2,‎ 所以|AN|·|BM|=4.‎ 综上可知,|AN|·|BM|为定值.‎ ‎【方法规律】‎ ‎1.求定值问题常见的方法有两种:‎ ‎(1)从特殊入手,求出定值,再证明这个值与变量无关.‎ ‎(2)直接推理、计算,并在计算推理的过程中消去变量,从而得出定值.‎ ‎2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.‎ ‎【变式探究】如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.‎ ‎(1)求椭圆E的方程;‎ ‎(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为定值.‎ ‎(1)解:由题设知=,b=1,‎ 结合a2=b2+c2,解得a=,‎ 所以椭圆的方程为+y2=1.‎ ‎(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,‎ 得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知Δ>0,‎ 设P(x1,y1),Q(x2,y2),x1x2≠0,‎ 则x1+x2=,x1x2=,‎ 从而直线AP,AQ的斜率之和 kAP+kAQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.‎ 故kAP+kAQ为定值2.‎ 例3、已知焦距为2的椭圆C:+=1(a>b>0)的右顶点为A,直线y=与椭圆C交于P,Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.‎ ‎(1)求椭圆C的方程;‎ ‎(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.‎ 若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM.点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.‎ ‎(2)证明:设直线MN的方程为y=k(x+2),N(x0,y0),‎ DA⊥AM,所以D(2,4k). ‎ 由整理得(1+2k2)x2+8k2x+8k2-4=0.‎ 则-2x0=,即x0=,‎ 所以y0=k(x0+2)=,则N,‎ 设G(t,0),则t≠-2,若以DN为直径的圆恒过直线AN和DG的交点,则DG⊥AN,‎ 所以·=0恒成立.‎ 因为=(2-t,4k),‎ =,‎ 所以·=(2-t)·+4k·=0恒成立,‎ 即=0恒成立,所以t=0,‎ 所以点G是定点(0,0).‎ ‎【方法规律】‎ ‎1.动直线l过定点问题,设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).‎ ‎2.动曲线C过定点问题,引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[来源:]‎ ‎【变式探究】已知两点A(-,0),B(,0),动点P在x轴上的投影是Q,且2·=||2.‎ ‎(1)求动点P的轨迹C的方程;‎ ‎(2)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.‎ ‎(1)解:设点P坐标为(x,y),所以点Q的坐标为(x,0).‎ 因为2·=||2,‎ 所以2[(--x)(-x)+y2]=y2,‎ 化简得点P的轨迹方程为+=1.‎ ‎(2)证明:当两直线的斜率都存在且不为0时,设lGH:y=k(x-1),G(x1,y1),H(x2,y2),lMN:y=-(x-1),M(x3,y3),N(x4,y4),‎ 联立消去y得(2k2+1)x2-4k2x+2k2-4=0.‎ 则Δ>0恒成立.‎ 所以x1+x2=,且x1x2=.‎ 所以GH中点E1坐标为,‎ 同理,MN中点E2坐标为,[来源:]‎ 所以kE1E2=,‎ 所以lE1E2的方程为y=,所以过点,‎ 当两直线的斜率分别为0和不存在时,lE1E2的方程为y=0,也过点,‎ 综上所述,lE1E2过定点.‎ 高频考点三 圆锥曲线中的存在性问题 存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).‎ ‎(2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在.‎ ‎(3)得出结论.‎ 例3、 已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点A在椭圆C上. ‎ ‎(1)求椭圆C的标准方程;‎ ‎(2)是否存在斜率为2的直线,使得当该直线与椭圆C有两个不同交点M,N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线的方程;若不存在,说明理由.‎ 解:(1)设椭圆C的焦距为‎2c,则c=1,‎ 因为A在椭圆C上,‎ 所以‎2a=|AF1|+|AF2|=2,则a=,b2=a2-c2=1,‎ 故椭圆C的方程为+y2=1.‎ ‎(2)不存在满足条件的直线,证明如下:设直线的方程为y=2x+t,‎ 设M(x1,y1),N(x2,y2),P,Q(x4,y4),MN的中点为D(x0,y0)‎ 由消去x,得9y2-2ty+t2-8=0,‎ 所以y1+y2=,且Δ=4t2-36(t2-8)>0,‎ 故y0==,且-3<t<3.‎ 由=得=(x4-x2,y4-y2),‎ 所以有y1-=y4-y2,y4=y1+y2-=t-.‎ 也可由=知四边形PMQN为平行四边形,而D为线段MN的中点,因此,D也为线段PQ的中点,所以y0==,可得y4=.‎ 又-3<t<3,所以-<y4<-1,‎ 与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.‎ 因此不存在满足条件的直线.‎ ‎【方法规律】‎ ‎1.此类问题一般分为探究条件、探究结构两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.‎ ‎2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.‎ ‎【变式探究】已知椭圆C:+=1(a>b>0)的离心率为,且过点P,F为其右焦点.‎ ‎(1)求椭圆C的方程;‎ ‎(2)设过点A(4,0)的直线l与椭圆相交于M,N两点(点M在A,N两点之间),是否存在直线l使△AMF与△MFN的面积相等?若存在,试求直线l的方程;若不存在,请说明理由.‎ 解:(1)因为=,所以a=‎2c,b=c.‎ 设椭圆方程+=1,‎ 又点P在椭圆上,所以+=1,解得c2=1.‎ 所以椭圆方程为+=1.‎ ‎(2)易知直线l的斜率存在,设l的方程为y=k(x-4),‎ 由消去y,‎ 得(3+4k2)x2-32k2x+64k2-12=0,‎ 由题意知Δ=(32k2)2-4(3+4k2)(64k2-12)>0,‎ 解得-<k<.‎ 设M(x1,y1),N(x2,y2),‎ 则x1+x2=,①‎ x1x2=.②‎ 因为△AMF 与△MFN的面积相等,‎ 所以|AM|=|MN|,所以2x1=x2+4.③‎ 由①③消去x2得x1=.④‎ 将x2=2x1-4代入②,得x1(2x1-4)=,⑤‎ 将④代入到⑤式,整理化简得36k2=5,‎ 所以k=±,经检验满足题设.‎ 故直线l的方程为y=±(x-4).‎ ‎1. (2018年天津卷)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.‎ ‎(I)求椭圆的方程;‎ ‎(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 (O为原点) ,求k的值.‎ ‎【答案】(Ⅰ);(Ⅱ)或 ‎【解析】(Ⅰ)设椭圆的焦距为2c,由已知有,‎ 又由a2=b2+c2,可得2a=3b.由已知可得,,,‎ 由,可得ab=6,从而a=3,b=2.‎ 所以,椭圆的方程为.‎ ‎(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).‎ 由已知有y1>y2>0,故.‎ 又因为,而∠OAB=,故.‎ 由,可得5y1=9y2.‎ 由方程组消去x,可得.‎ 易知直线AB的方程为x+y–2=0,‎ 由方程组消去x,可得.‎ 由5y1=9y2,可得5(k+1)=,‎ 两边平方,整理得,‎ 解得,或.‎ 所以,k的值为或 ‎2. (2018年江苏卷)如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.‎ ‎(1)求椭圆C及圆O的方程;‎ ‎(2)设直线l与圆O相切于第一象限内的点P.‎ ‎①若直线l与椭圆C有且只有一个公共点,求点P的坐标;‎ ‎②直线l与椭圆C交于两点.若的面积为,求直线l的方程.‎ ‎【答案】(1)椭圆C的方程为;圆O的方程为 ‎(2)①点P的坐标为;②直线l的方程为 ‎【解析】(1)因为椭圆C的焦点为,‎ 可设椭圆C的方程为.又点在椭圆C上,‎ 所以,解得 因此,椭圆C的方程为.‎ 因为圆O的直径为,所以其方程为.‎ ‎(2)①设直线l与圆O相切于,则,‎ 所以直线l的方程为,即.‎ 由,消去y,得 ‎.(*)‎ 因为直线l与椭圆C有且只有一个公共点,‎ 所以.‎ 因为,所以.‎ 因此,点P的坐标为.‎ ‎②因为三角形OAB的面积为,所以,从而.‎ 设,‎ 由(*)得,‎ 所以 ‎.‎ 因为,‎ 所以,即,‎ 解得舍去),则,因此P的坐标为.‎ 综上,直线l的方程为.‎ ‎3.(2018年全国I卷理数)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.‎ ‎(1)当与轴垂直时,求直线的方程;‎ ‎(2)设为坐标原点,证明:.‎ ‎【答案】(1) AM的方程为或.‎ ‎(2)证明见解析.‎ ‎【解析】‎ ‎(1)由已知得,l的方程为x=1.‎ 由已知可得,点A的坐标为或.‎ 所以AM的方程为或.‎ ‎(2)当l与x轴重合时,.‎ 当l与x轴垂直时,OM为AB的垂直平分线,所以.‎ 当l与x轴不重合也不垂直时,设l的方程为,,‎ 则,直线MA,MB的斜率之和为.‎ 由得 ‎.‎ 将代入得 ‎.‎ 所以,.‎ 则.‎ 从而,故MA,MB的倾斜角互补,所以.‎ 综上,.‎ ‎4. (2018年全国Ⅲ卷理数)已知斜率为的直线与椭圆交于,两点,线段的中点为.‎ ‎(1)证明:;‎ ‎(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.‎ ‎【答案】(1)‎ ‎(2)或 ‎【解析】(1)设,则.‎ 两式相减,并由得 ‎.‎ 由题设知,于是 ‎.①[来源:学,科,网Z,X,X,K]‎ 由题设得,故.‎ ‎(2)由题意得,设,则 ‎.‎ 由(1)及题设得.‎ 又点P在C上,所以,从而,.‎ 于是 ‎.‎ 同理.‎ 所以.‎ 故,即成等差数列.‎ 设该数列的公差为d,则 ‎.②‎ 将代入①得.‎ 所以l的方程为,代入C的方程,并整理得.‎ 故,代入②解得.‎ 所以该数列的公差为或.‎ ‎5. (2018年浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.‎ ‎(Ⅰ)设AB中点为M,证明:PM垂直于y轴;‎ ‎(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.‎ ‎【答案】(Ⅰ)见解析 ‎(Ⅱ)‎ ‎【解析】(Ⅰ)设,,.‎ 因为,的中点在抛物线上,所以,为方程 即的两个不同的实数根.‎ 所以.‎ 因此,垂直于轴.‎ ‎(Ⅱ)由(Ⅰ)可知 所以,.‎ 因此,的面积.‎ 因为,所以.‎ 因此,面积的取值范围是.‎ ‎6. (2018年北京卷)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.‎ ‎(Ⅰ)求直线l的斜率的取值范围;‎ ‎(Ⅱ)设O为原点,,,求证:为定值.‎ ‎【答案】(1) 取值范围是(-∞,-3)∪(-3,0)∪(0,1)‎ ‎ (2)证明过程见解析 ‎【解析】(Ⅰ)因为抛物线y2=2px经过点P(1,2),‎ 所以4=2p,解得p=2,所以抛物线的方程为y2=4x.‎ 由题意可知直线l的斜率存在且不为0,‎ 设直线l的方程为y=kx+1(k≠0).‎ 由得.‎ 依题意,解得k<0或00).‎ 设A(x1,y1),B(x2,y2).‎ 由得.‎ ‎,故.‎ 所以.‎ 由题设知,解得k=–1(舍去),k=1.[来源:学。科。网]‎ 因此l的方程为y=x–1.‎ ‎(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为 ‎,即.‎ 设所求圆的圆心坐标为(x0,y0),则 解得或 因此所求圆的方程为 或.‎ ‎1.(2017·全国卷Ⅱ)设点O为坐标原点,动点M在椭圆C:+y2=1上,过点M作x轴的垂线,垂足为N,点P满足=. ‎ ‎(1)求点P的轨迹方程;‎ ‎(2)设点Q在直线x=-3上,且·=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.‎ ‎(1)解:设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0),‎ 由=得x0=x,y0=y,‎ 因为M(x0,y0)在C上,所以+=1,‎ 因此点P的轨迹方程为x2+y2=2.‎ ‎2.【2017课标1,理20】已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4‎ ‎(1,)中恰有三点在椭圆C上.‎ ‎(1)求C的方程;‎ ‎(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.‎ ‎【答案】(1).(2)见解析。‎ ‎【解析】(1)由于, 两点关于y轴对称,故由题设知C经过, 两点.‎ 又由知,C不经过点P1,所以点P2在C上.‎ 因此,解得.‎ 故C的方程为.‎ ‎(2)设直线P2A与直线P2B的斜率分别为k1,k2,‎ 如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t, ),(t, ).‎ 则,得,不符合题设.‎ 从而可设l: ().将代入得 由题设可知.‎ 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.‎ 而 ‎.‎ 由题设,故.‎ 即.‎ 解得.‎ 当且仅当时, ,欲使l:,即,‎ 所以l过定点(2, )‎ ‎3.【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。‎ (1) 求点P的轨迹方程;‎ ‎(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。 ‎ ‎【答案】(1) 。(2)证明略。‎ ‎【解析】(1)设P(x,y),M(),则N(),‎ 由得.‎ 因为M()在C上,所以.‎ 因此点P的轨迹为.‎ 由题意知F(-1,0),设Q(-3,t),P(m,n),则 ‎,‎ ‎.‎ 由得-3m-+tn-=1, 又由(1)知,故 ‎3+3m-tn=0.‎ 所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.‎ ‎4.【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.‎ ‎(Ⅰ)求椭圆的方程;‎ ‎(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.‎ ‎【答案】(I).‎ ‎(Ⅱ)的最大值为,取得最大值时直线的斜率为.‎ ‎【解析】‎ ‎(I)由题意知 , ,‎ 所以,‎ 因此 椭圆的方程为.‎ ‎(Ⅱ)设,‎ 联立方程 得,‎ 由题意知,‎ 且,‎ 所以.‎ 由题意可知圆的半径为 由题设知,‎ 所以 因此直线的方程为.‎ 联立方程 得,‎ 因此.‎ 由题意可知,‎ 而 ‎,‎ 令,‎ 则,‎ 因此,‎ 当且仅当,即时等号成立,此时,‎ 所以,‎ 因此,‎ 所以 最大值为.‎ 综上所述: 的最大值为,取得最大值时直线的斜率为.‎ ‎5.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.‎ ‎(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;‎ ‎(Ⅱ)求证:A为线段BM的中点.‎ ‎【答案】(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.‎ ‎【解析】‎ ‎(Ⅰ)由抛物线C: 过点P(1,1),得.‎ 所以抛物线C的方程为.‎ 抛物线C的焦点坐标为(,0),准线方程为.‎ ‎(Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为, .‎ 由,得.‎ 则, .‎ 因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.‎ 直线ON的方程为,点B的坐标为.‎ 因为 ‎,‎ 所以.‎ 故A为线段BM的中点.‎ ‎6.【2017天津,理19】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.‎ ‎(I)求椭圆的方程和抛物线的方程;‎ ‎(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.‎ ‎【答案】(Ⅰ), .(Ⅱ),或.‎ ‎【解析】‎ ‎(Ⅰ)解:设的坐标为.依题意, , , ,解得, , ,于是.所以,椭圆的方程为,抛物线的方程为.‎ ‎(Ⅱ)解:设直线的方程为,与直线的方程联立,可得点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可学*科.网得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.‎ 所以,直线的方程为,或.‎ ‎7.【2017江苏,17】 如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,‎ 离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线.‎ ‎(1)求椭圆的标准方程;‎ ‎(2)若直线的交点在椭圆上,求点的坐标.‎ ‎【答案】(1)(2)‎ ‎【解析】(1)设椭圆的半焦距为c. ‎ 因为椭圆E的离心率为,两准线之间的距离为8,所以, , ‎ 解得,于是, ‎ 因此椭圆E的标准方程是.‎ 由①②,解得,所以.‎ 因为点在椭圆上,由对称性,得,即或.‎ 又在椭圆E上,故.‎ 由,解得;,无解.‎ 因此点P的坐标为.‎
查看更多

相关文章

您可能关注的文档