- 2021-06-20 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版高三数学总复习课时作业58
课时作业58 双曲线 一、选择题 1.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 解析:因为双曲线的焦距为10,所以c=5. 又因为P(2,1)在渐近线上,且渐近线方程为y=x, 所以1=,即a=2b. 又因为c2=a2+b2=5b2=25,所以b2=5,a2=20. 即双曲线方程为-=1. 答案:A 2.(2014·新课标全国卷Ⅰ)已知双曲线-=1(a>0)的离心率为2,则a=( ) A.2 B. C. D.1 解析:由题知=2,解得a=1. 答案:D 3.(2014·天津卷)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 解析:渐近线平行于l,则=2,又焦点为(-5,0),则c=5,可得c2=a2+b2=5a2=25,得a2=5,b2=4a2=20,选A. 答案:A 4.已知双曲线的方程为-=1(a>0,b>0),双曲线的一个焦点到一条渐近线的距离为c(其中c为双曲线的半焦距长),则该双曲线的离心率为( ) A. B. C. D. 解析:不妨取双曲线的右焦点(c,0),双曲线的渐近线为y=±x,即bx±ay=0.则焦点到渐近线的距离为=c,即b=c,从而b2=c2=c2-a2,所以c2=a2,即e2=,所以离心率e=. 答案:A 5.(2014·新课标全国卷Ⅰ)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( ) A. B.3 C.m D.3m 解析:由题意,可得双曲线C为-=1,则双曲线的半焦距c=.不妨取右焦点(,0),其渐近线方程为y=± x,即x±y=0.所以由点到直线的距离公式得d==.故选A. 答案:A 6.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( ) A.(1,) B.(1,] C.(,+∞) D.[,+∞) 解析:∵双曲线的一条渐近线方程为y=x, 则由题意得>2. ∴e==>=. 答案:C 二、填空题 7.(2014·北京卷)设双曲线C经过点(2,2),且与-x2=1具有相同渐近线,则C的方程为________;渐近线方程为________. 解析:双曲线-x2=1的渐近线为y=±2x,故C的渐近线为y =±2x,设C:-x2=m,并将点(2,2)代入C的方程,解得m=-3,故C的方程为-x2=-3,即-=1. 答案:-=1 y=±2x 8.已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为________. 解析:不妨设点P在双曲线的右支上且F1,F2分别为左、右焦点,因为PF1⊥PF2,所以(2)2=|PF1|2+|PF2|2, 又因为|PF1|-|PF2|=2, 所以(|PF1|-|PF2|)2=4,可得2|PF1|·|PF2|=4, 则(|PF1|+|PF2|)2=|PF1|2+|PF2|2+2|PF1|·|PF2|=12,所以|PF1|+|PF2|=2. 答案:2 9.(2014·浙江卷)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________. 解析:由双曲线的方程可知,它的渐近线方程为y=x和y=-x,分别与x-3y+m=0联立,解得A,B,由|PA|=|PB|得,AB中点Q的坐标为Q,由PQ与已知直线垂直,解得2a2=8b2 =8(c2-a2),即=,故e==. 答案: 三、解答题 10.双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||,||,||成等差数列,且与同向. (1)求双曲线的离心率. (2)设直线AB被双曲线所截得的线段的长为4,求双曲线的方程. 解:(1)设|OA|=m-d,|AB|=m,|OB|=m+d, 由勾股定理可得(m-d)2+m2=(m+d)2, 得d=m,tan∠AOF=, tan∠AOB=tan2∠AOF==, 由倍角公式,得=,解得=, 则离心率e=. (2)不妨设过F与l1垂直的直线方程为y=-(x-c),与双曲线方程-=1联立,将a=2b,c=b代入,化简有x2-x+21=0, 4=|x1-x2| =, 将数值代入,有4=, 解得b=3,故所求的双曲线方程为-=1. 11.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为. (1)求双曲线的方程; (2)已知直线y=x-2与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使+=t,求t的值及点D的坐标. 解:(1)由题意知a=2,∴一条渐近线为y=x. 即bx-2y=0.∴=. ∴b2=3,∴双曲线的方程为-=1. (2)设M(x1,y1),N(x2,y2),D(x0,y0), 则x1+x2=tx0,y1+y2=ty0. 将直线方程代入双曲线方程得x2-16x+84=0, 是x1+x2=16,y1+y2=12. ∴∴ ∴t=4,点D的坐标为(4,3). 1.已知双曲线-=1(b>0)的左,右焦点分别是F1,F2,其一条渐近线方程为y=x,点P(,y0)在双曲线上.则·=( ) A.-12 B.-2 C.0 D.4 解析:由渐近线方程为y=x知双曲线是等轴双曲线,不妨设双曲线方程是x2-y2=2,于是F1,F2坐标分别是(-2,0)和(2,0),且P(,1)或P(,-1).由双曲线的对称性,不妨取P(,1),则=(-2-,-1),=(2-,-1).所以·=(-2-,-1)·(2-,-1)=-(2+)·(2-)+1=0. 答案:C 2.已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( ) A.(1,2) B.(,2) C.(,2) D.(2,3) 解析:由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF<即可.直线AB 的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF<,即1,故1查看更多