2012高考真题分类汇编:概率

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2012高考真题分类汇编:概率

‎2012高考真题分类汇编:概率 一、选择题 ‎1、【2012高考真题湖北理8】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A. B.‎ C. D.‎ ‎2、【2012高考真题广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A. B. C. D.‎ ‎3、【2012高考真题福建理6】如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为 A. B. C. D. ‎ ‎4、【2012高考真题北京理2】设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是 ‎(A) (B) (C) (D)‎ ‎5、【2012高考真题辽宁理10】在长为‎12cm的线段AB上任取一点C.现作一矩形,领边长分别等于线段AC,CB的长,则该矩形面积小于‎32cm2的概率为 ‎(A) (B) (C) (D) ‎ 二、填空题 ‎6、【2012高考真题上海理11】三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。‎ ‎7、【2012高考真题新课标理15】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 ‎ ‎8、【2012高考江苏6】现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .‎ 三、解答题 ‎9、【2012高考真题全国卷理19】‎ 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.‎ ‎(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;‎ ‎(Ⅱ)表示开始第4次发球时乙的得分,求的期望.‎ ‎10、【2012高考真题四川理17】‎ ‎ 某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。‎ ‎(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;‎ ‎(Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望。‎ ‎11、【2012高考真题湖北理】‎ 根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:‎ 降水量X 工期延误天数 ‎0‎ ‎2‎ ‎6‎ ‎10‎ 历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9. 求:‎ ‎(Ⅰ)工期延误天数的均值与方差; ‎ ‎(Ⅱ)在降水量X至少是的条件下,工期延误不超过6天的概率. ‎ ‎12、【2012高考真题广东理17】某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50][50,60][60,70][70,80][80,90][90,100].‎ ‎(1)求图中x的值;‎ ‎(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求得数学期望.‎ ‎13、【2012高考真题天津理16】‎ 现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.‎ ‎(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;‎ ‎(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;‎ 用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.‎ ‎14、【2012高考真题浙江理19】已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.‎ ‎(Ⅰ)求X的分布列;‎ ‎(Ⅱ)求X的数学期望E(X).‎ ‎15、【2012高考真题重庆理17】‎ 甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.‎ ‎(Ⅰ) 求甲获胜的概率;‎ ‎(Ⅱ)求投篮结束时甲的投篮次数的分布列与期望 ‎ ‎ ‎16、【2012高考真题江西理29】‎ 如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。‎ ‎(1)求V=0的概率;‎ ‎(2)求V的分布列及数学期望。‎ ‎17、【2012高考真题湖南理17】‎ 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.‎ 一次购物量 ‎1至4件 ‎5至8件 ‎9至12件 ‎13至16件 ‎17件及以上 顾客数(人)‎ ‎30‎ ‎25‎ ‎10‎ 结算时间(分钟/人)‎ ‎1‎ ‎1.5‎ ‎2‎ ‎2.5‎ ‎3‎ 已知这100位顾客中的一次购物量超过8件的顾客占55%.‎ ‎(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;‎ ‎(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.‎ ‎(注:将频率视为概率)‎ ‎18、【2012高考真题安徽理17】‎ 某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束。试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量。‎ ‎(Ⅰ)求的概率;‎ ‎(Ⅱ)设,求的分布列和均值(数学期望)。‎ ‎19、【2012高考真题新课标理18】‎ 某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,‎ 如果当天卖不完,剩下的玫瑰花作垃圾处理.‎ ‎(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量 ‎(单位:枝,)的函数解析式. ‎ ‎(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:‎ 以100天记录的各需求量的频率作为各需求量发生的概率.‎ ‎(i)若花店一天购进枝玫瑰花,表示当天的利润(单位:元),求的分布列,‎ 数学期望及方差;‎ ‎(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?‎ 请说明理由.‎ ‎20、【2012高考真题山东理19】‎ ‎ 先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.‎ ‎(Ⅰ)求该射手恰好命中一次得的概率;‎ ‎(Ⅱ)求该射手的总得分的分布列及数学期望.‎ ‎21、【2012高考真题福建理16】‎ 受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:‎ 将频率视为概率,解答下列问题:‎ ‎(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;‎ ‎(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;‎ ‎(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.‎ ‎22、【2012高考真题北京理17】‎ 近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):‎ ‎“厨余垃圾”箱 ‎“可回收物”箱 ‎“其他垃圾”箱 厨余垃圾 ‎400‎ ‎100‎ ‎100‎ 可回收物 ‎30‎ ‎240‎ ‎30‎ 其他垃圾 ‎20‎ ‎20‎ ‎60‎ ‎(Ⅰ)试估计厨余垃圾投放正确的概率;‎ ‎(Ⅱ)试估计生活垃圾投放错误额概率;‎ ‎(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为其中a>0,=600。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。‎ ‎(注:,其中为数据的平均数)‎ ‎23、【2012高考真题陕西理20】‎ 某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:‎ 从第一个顾客开始办理业务时计时。‎ ‎(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;‎ ‎(2)表示至第2分钟末已办理完业务的顾客人数,求的分布列及数学期望。‎ ‎ ‎ ‎24、【2012高考江苏25】设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.‎ ‎ (1)求概率;‎ ‎ (2)求的分布列,并求其数学期望.‎ ‎ ‎ 以下是答案 一、选择题 ‎1、 A ‎2、 D ‎3、 C ‎4、 D ‎5、 C 二、填空题 ‎6、 ‎ ‎7、 ‎ ‎8、 。‎ 三、解答题 ‎9、‎ ‎10、‎ ‎11、 (Ⅰ)由已知条件和概率的加法公式有:‎ ‎,‎ ‎.‎ ‎.‎ 所以的分布列为:‎ ‎0‎ ‎2‎ ‎6‎ ‎10‎ ‎0.3‎ ‎0.4‎ ‎0.2‎ ‎0.1‎ ‎ ‎ 于是,;‎ ‎.‎ ‎ 故工期延误天数的均值为3,方差为. ‎ ‎(Ⅱ)由概率的加法公式,‎ 又. ‎ ‎ 由条件概率,得.‎ 故在降水量X至少是mm的条件下,工期延误不超过6天的概率是. ‎ ‎12、 ‎ ‎13、‎ ‎14、 本题主要考察分布列,数学期望等知识点。‎ ‎(Ⅰ) X的可能取值有:3,4,5,6.‎ ‎ ; ;‎ ‎; .‎ 故,所求X的分布列为 X ‎3‎ ‎4‎ ‎5‎ ‎6‎ P ‎ (Ⅱ) 所求X的数学期望E(X)为:‎ E(X)=.‎ ‎15、‎ ‎16、 ‎ ‎17、 (1)由已知,得所以 该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 ‎ ‎ ‎ ‎ 的分布为 ‎ X ‎1‎ ‎1.5‎ ‎2‎ ‎2.5‎ ‎3‎ P X的数学期望为 ‎ .‎ ‎(Ⅱ)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,为该顾客前面第位顾客的结算时间,则 ‎ .‎ 由于顾客的结算相互独立,且的分布列都与X的分布列相同,所以 ‎ ‎ ‎ .‎ 故该顾客结算前的等候时间不超过2.5分钟的概率为.‎ ‎【解析】‎ ‎【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知 从而解得,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得 该顾客结算前的等候时间不超过2.5分钟的概率.‎ ‎18、 【解析】(I)表示两次调题均为类型试题,概率为 ‎(Ⅱ)时,每次调用的是类型试题的概率为,‎ 随机变量可取 ‎,,‎ ‎。‎ 答:(Ⅰ)的概率为,‎ ‎ (Ⅱ)求的均值为。‎ ‎19、 (1)当时,‎ ‎ 当时,‎ ‎ 得:‎ ‎ (2)(i)可取,,‎ ‎ ‎ ‎ 的分布列为 ‎ ‎ ‎ ‎ ‎ (ii)购进17枝时,当天的利润为 ‎ 得:应购进17枝 ‎20、 ‎ ‎21、 ‎ ‎22、 解:(1)由题意可知:。‎ ‎(2)由题意可知:。‎ ‎(3)由题意可知:,因此有当,,时,有.‎ ‎23、 ‎ ‎24、 【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,‎ ‎ ∴共有对相交棱。‎ ‎ ∴ 。‎ ‎ (2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,‎ ‎ ∴ ,。‎ ‎ ∴随机变量的分布列是:‎ ‎0‎ ‎1‎ ‎ ∴其数学期望。 ‎ ‎【考点】概率分布、数学期望等基础知识。‎ ‎【解析】(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率。‎ ‎ (2)求出两条棱平行且距离为的共有6对,即可求出,从而求出(两条棱平行且距离为1和两条棱异面),因此得到随机变量的分布列,求出其数学期望。‎
查看更多

相关文章

您可能关注的文档