- 2021-06-17 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题12+函数模型及其应用(押题专练)-2018年高考数学(理)一轮复习精品资料
专题12+函数模型及其应用 1.在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为 ( ). 解析 由题意可得y=(1+10.4%)x. 答案 D 2.甲、乙两人沿同一方向去地,途中都使用两种不同的速度.甲一半路程使用速度,另一半路程使用速度,乙一半时间使用速度,另一半时间使用速度,甲、乙两人从地到地的路程与时间的函数图象及关系,有下面图中个不同的图示分析(其中横轴表示时间,纵轴表示路程),其中正确的图示分析为( ). A.(1) B.(3) C.(1)或(4) D. (1)或(2) (1) (2) (3) (4) 解析 根据题目描述分析图像可知D正确 答案 D 3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为 ( ). A.45.606万元 B.45.6万元 C. 45.56万元 D.45.51万元 解析 依题意可设甲销售x辆,则乙销售(15-x)辆,总利润S=L1+L2,则总利润S=5.06x -0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.2)2+0.15×10.22+30(x≥0),∴当x=10时,Smax=45.6(万元). 答案 B 4.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)为二次函数关系(如图所示),则每辆客车营运多少年时,其营运的年平均利润最大 ( ). A.3 B.4 C.5 D.6 5.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x,y剪去部分的面积为20,若2≤x≤10,记y=f(x),则y=f(x)的图象是 ( ). 解析 由题意得2xy=20,即y=,当x=2时,y=5,当x=10时,y =1时,排除C,D,又2≤x≤10,排除B. 答案 A 6.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x、y应为( ). A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14 解析 由三角形相似得=, 得x=(24-y), ∴S=xy=-(y-12)2+180, ∴当y=12时,S有最大值,此时x=15. 答案 A 7.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下: 明文密文密文明文 已知加密为y=ax-2(x为明文,y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________. 解析 依题意y=ax-2中,当x=3时,y=6,故6=a3-2,解得a=2.所以加密为y=2x-2,因此,当y=14时,由14=2x-2,解得x=4. 答案 4 8.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件________元. 9.现有含盐7%的食盐水为200 g,需将它制成工业生产上需要的含盐5 %以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水x g,则x的取值范围是__________. 解析 根据已知条件:设y=,令5%<y<6%,即(200+x)5%<200×7%+x·4%<(200+x)6%,解得100<x<400. 答案 (100,400) 10.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km. 解析 由已知条件y= 由y=22.6解得x=9. 答案 9 11.为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系分别如图①、②所示. (1)分别求出通话费y1,y2与通话时间x之间的函数关系式; (2)请帮助用户计算,在一个月内使用哪种卡便宜? 解 (1)由图象可设y1=k1x+29,y2=k2x,把点B(30,35),C(30,15)分别代入y1,y2得k1= ,k2=. ∴y1=x+29,y2=x. (2)令y1=y2,即x+29=x,则x=96. 当x=96时,y1=y2,两种卡收费一致; 当x<96时,y1>y2,即使用“便民卡”便宜; 当x>96时,y1查看更多