- 2021-06-17 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019高三数学文北师大版一轮课时分层训练14+导数与函数的单调性
课时分层训练(十四) 导数与函数的单调性 (对应学生用书第192页) A组 基础达标 (建议用时:30分钟) 一、选择题 1.函数y=x2-ln x的单调递减区间为( ) A.(-1,1) B.(0,1) C.(1,+∞) D.(0,+∞) B [y=x2-ln x,y′=x-= =(x>0). 令y′<0,得0<x<1,∴单调递减区间为(0,1).] 2.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图2113所示,则下列叙述正确的是( ) 图2113 A.f(b)>f(c)>f(d) B.f(b)>f(a)>f(e) C.f(c)>f(b)>f(a) D.f(c)>f(e)>f(d) C [依题意得,当x∈(-∞,c)时,f′(x)>0,因此,函数f(x)在(-∞,c)上是增加的,由a<b<c,所以f(c)>f(b)>f(a).因此C正确.] 3.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围为( ) A.(-∞,2) B.(-∞,2] C. D. D [∵f′(x)=6x2-6mx+6, 当x∈(2,+∞)时,f′(x)≥0恒成立, 即x2-mx+1≥0恒成立,∴m≤x+恒成立. 令g(x)=x+,g′(x)=1-, ∴当x>2时,g′(x)>0,即g(x)在(2,+∞)上单调递增, ∴m≤2+=,故选D.] 4.(2017·山东高考)若函数exf(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是( ) A.f(x)=2-x B.f(x)=x2 C.f(x)=3-x D.f(x)=cos x A [若f(x)具有性质M,则[exf(x)]′=ex[f(x)+f′(x)]>0在f(x)的定义域上恒成立,即f(x)+f′(x)>0在f(x)的定义域上恒成立. 对于选项A,f(x)+f′(x)=2-x-2-xln 2=2-x(1-ln 2)>0,符合题意. 经验证,选项B,C,D均不符合题意. 故选A.] 5.(2016·湖北枣阳第一中学3月模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ) 【导学号:00090066】 A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞) B [由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上是增加的,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.] 二、填空题 6.函数f(x)=的单调递增区间是________. (0,e) [由f′(x)=′=>0(x>0), 可得解得x∈(0,e).] 7.若函数y=ax+sin x在R上是增加的,则a的最小值为________. 1 [函数y=ax+sin x在R上单调递增等价于y′=a+cos x≥0在R上恒成立,即a≥-cos x在R上恒成立,因为-1≤-cos x≤1,所以a≥1,即a的最小值为1.] 8.(2017·江苏高考)已知函数f(x)=x3-2x+ex-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是________. [因为f(-x)=(-x)3-2(-x)+e-x- =-x3+2x-ex+=-f(x), 所以f(x)=x3-2x+ex-是奇函数. 因为f(a-1)+f(2a2)≤0, 所以f(2a2)≤-f(a-1),即f(2a2)≤f(1-a). 因为f′(x)=3x2-2+ex+e-x≥3x2-2+2=3x2≥0, 所以f(x)在R上是增加的, 所以2a2≤1-a,即2a2+a-1≤0, 所以-1≤a≤.] 三、解答题 9.已知函数f(x)=(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行. (1)求k的值; (2)求f(x)的单调区间. 【导学号:00090067】 [解] (1)由题意得f′(x)=, 又f′(1)==0,故k=1. 5分 (2)由(1)知,f′(x)=. 设h(x)=-ln x-1(x>0), 则h′(x)=--<0, 即h(x)在(0,+∞)上是减少的. 8分 由h(1)=0知,当0<x<1时,h(x)>0,从而f′(x)>0; 当x>1时,h(x)<0,从而f′(x)<0. 综上可知,f(x)的单调递增区间是(0,1), 单调递减区间是(1,+∞). 12分 10.(2015·重庆高考)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值. (1)确定a的值; (2)若g(x)=f(x)ex,讨论g(x)的单调性. [解] (1)对f(x)求导得f′(x)=3ax2+2x, 2分 因为f(x)在x=-处取得极值, 所以f′=0, 即3a·+2·=-=0, 解得a=. 5分 (2)由(1)得g(x)=ex, 故g′(x)=ex+ex =ex =x(x+1)(x+4)ex. 8分 令g′(x)=0,解得x=0或x=-1或x=-4. 当x<-4时,g′(x)<0,故g(x)为减函数; 当-4查看更多