【数学】2018届一轮复习人教A版 圆的方程 学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习人教A版 圆的方程 学案

第3讲 圆的方程 最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.‎ 知 识 梳 理 ‎1.圆的定义和圆的方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程 标准 ‎(x-a)2+(y-b)2=r2(r>0)‎ 圆心C(a,b)‎ 半径为r 一般 x2+y2+Dx+Ey+F=0‎ ‎(D2+E2-‎4F>0)‎ 充要条件:D2+E2-‎4F>0‎ 圆心坐标: 半径r= ‎2.点与圆的位置关系 平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:‎ ‎(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;‎ ‎(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;‎ ‎(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.‎ 诊 断 自 测 ‎1.判断正误(在括号内打“√”或“×”)‎ ‎(1)确定圆的几何要素是圆心与半径.(  )‎ ‎(2)方程x2+y2=a2表示半径为a的圆.(  )‎ ‎(3)方程x2+y2+4mx-2y+‎5m=0表示圆.(  )‎ ‎(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(  )‎ 解析 (2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.‎ ‎(3)当(‎4m)2+(-2)2-4×‎5m>0,即m<或m>1时才表示圆.‎ 答案 (1)√ (2)× (3)× (4)√‎ ‎2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是(  )‎ A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1‎ C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2‎ 解析 由题意得圆的半径为,故该圆的方程为(x-1)2+(y-1)2=2,故选D.‎ 答案 D ‎3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是(  )‎ A.(-1,1) B.(0,1)‎ C.(-∞,-1)∪(1,+∞) D.a=±1‎ 解析 因为点(1,1)在圆的内部,‎ 所以(1-a)2+(1+a)2<4,所以-10),‎ 将P,Q两点的坐标分别代入得 又令y=0,得x2+Dx+F=0.③‎ 设x1,x2是方程③的两根,‎ 由|x1-x2|=6,得D2-‎4F=36,④‎ 由①,②,④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.‎ 故所求圆的方程为 x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.‎ 答案 (1)(x-3)2+y2=2 (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0‎ 规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:‎ ‎(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;‎ ‎(2)代数法,即设出圆的方程,用待定系数法求解.‎ ‎【训练1】 (1)(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.‎ ‎(2)(2017·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.‎ 解析 (1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,解得a=2,所以圆C的半径r=|CM|==3,所以圆C的方程为(x-2)2+y2=9.‎ ‎(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.‎ 答案 (1)(x-2)2+y2=9 (2)(x-1)2+y2=4‎ 考点二 与圆有关的最值问题 ‎【例2】 已知实数x,y满足方程x2+y2-4x+1=0.‎ ‎(1)求的最大值和最小值;‎ ‎(2)求y-x的最大值和最小值;‎ ‎(3)求x2+y2的最大值和最小值.‎ 解 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.‎ ‎(1)的几何意义是圆上一点与原点连线的斜率,‎ 所以设=k,即y=kx.‎ 当直线y=kx与圆相切时,斜率k取最大值或最小值,此时=,解得k=±(如图1).‎ 所以的最大值为,最小值为-.‎ ‎(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±(如图2).‎ 所以y-x的最大值为-2+,最小值为-2-.‎ ‎(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).‎ 又圆心到原点的距离为=2,‎ 所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.‎ 规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:‎ ‎(1)形如m=的最值问题,可转化为动直线斜率的最值问题;‎ ‎(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;‎ ‎(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.‎ ‎【训练2】 (1)(2017·义乌市诊断)圆心在曲线y=(x>0)上,与直线2x+y+1=0相切,且面积最小的圆的方程为(  )‎ A.(x-2)2+(y-1)2=25 B.(x-2)2+(y-1)2=5‎ C.(x-1)2+(y-2)2=25 D.(x-1)2+(y-2)2=5‎ ‎(2)(2014·全国Ⅱ卷)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.‎ 解析 (1)设圆心坐标为C(a>0),则半径r=≥=,当且仅当‎2a=,即a=1时取等号.‎ 所以当a=1时圆的半径最小,此时r=,C(1,2),所以面积最小的圆的方程为(x-1)2+(y-2)2=5.‎ ‎(2)如图所示,过点O作OP⊥MN交MN于点P.‎ 在Rt△OMP中,|OP|=|OM|·sin 45°,‎ 又|OP|≤1,得|OM|≤=.‎ ‎∴|OM|=≤,∴x≤1.‎ 因此-1≤x0≤1.‎ 答案 (1)D (2)[-1,1]‎ 考点三 与圆有关的轨迹问题 ‎【例3】 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.‎ 解 如图所示,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.由于平行四边形的对角线互相平分,‎ 故=,=.从而 又N(x+3,y-4)在圆上,‎ 故(x+3)2+(y-4)2=4.‎ 因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点和(点P在直线OM上时的情况).‎ 规律方法 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:‎ ‎(1)直接法,直接根据题目提供的条件列出方程;‎ ‎(2)定义法,根据圆、直线等定义列方程;‎ ‎(3)几何法,利用圆的几何性质列方程;‎ ‎(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.‎ ‎【训练3】 (2014·全国Ⅰ卷)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.‎ ‎(1)求M的轨迹方程;‎ ‎(2)当|OP|=|OM|时,求l的方程及△POM的面积.‎ 解 (1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.‎ 设M(x,y),则=(x,y-4),=(2-x,2-y).‎ 由题设知·=0,故x(2-x)+(y-4)(2-y)=0,‎ 即(x-1)2+(y-3)2=2.‎ 由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.‎ ‎(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.‎ 因为ON的斜率为3,所以l的斜率为-,‎ 故l的方程为x+3y-8=0.‎ 又|OM|=|OP|=2,O到l的距离为,‎ 所以|PM|=,S△POM=××=,‎ 故△POM的面积为.‎ ‎[思想方法]‎ ‎1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.‎ ‎2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.‎ ‎[易错防范]‎ ‎1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.‎ ‎2.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线. ‎
查看更多

相关文章

您可能关注的文档