- 2021-06-16 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习人教A版理第7章第4节 直线、平面平行的判定及其性质教案
第四节 直线、平面平行的判定及其性质 [考纲传真] (教师用书独具)1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题. (对应学生用书第111页) [基础知识填充] 1.直线与平面平行 (1)直线与平面平行的定义 直线l与平面α没有公共点,则称直线l与平面α平行. (2)判定定理与性质定理 文字语言 图形表示 符号表示 判 定 定 理 平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面 a⊄α,b⊂α,a∥b⇒a∥α 性 质 定 理 一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 a∥α,a⊂β,α∩β=b⇒a∥b 2.平面与平面平行 (1)平面与平面平行的定义 没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理 文字语言 图形表示 符号表示 判定 定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β 性质 定理 两个平面平行,则其中一个平面内的直线平行于另一个平面 α∥β,a⊂α⇒a∥β 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 α∥β,α∩γ=a,β∩γ=b⇒a∥b 3.与垂直相关的平行的判定 (1)a⊥α,b⊥α⇒a∥b. (2)a⊥α,a⊥β⇒α∥β. [基本能力自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( ) (2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( ) (3)若一个平面内有无数条直线与另一个平面平行,则这两个平面平行.( ) (4)若两个平面平行,则一个平面内的直线与另一个平面平行.( ) (5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面. [答案] (1)× (2)× (3)× (4)√ (5)√ 2.下列命题中,正确的是( ) A.若a∥b,b⊂α,则a∥α B.若a∥α,b⊂α,则a∥b C.若a∥α,b∥α,则a∥b D.若a∥b,b∥α,a⊄α,则a∥α D [A中还有可能a⊂α,B中还有可能a与b异面,C中还有可能a与b相交或异面, 只有选项D正确.] 3.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β ”是“α∥β ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 B [当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β ”是“α∥β ”的必要而不充分条件.] 4.三棱柱ABCA1B1C1中,过棱A1C1,B1C1,BC,AC的中点E,F,G,H的平面与平面________平行. A1B1BA [ 如图所示,连接各中点后,易知平面EFGH与平面A1B1BA平行.] 5.(教材改编)在正方体ABCDA1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系是________. 平行 [如图所示,连接BD交AC于F,连接EF,则EF是△BDD1的中位线, ∴EF∥BD1, 又EF⊂平面ACE, BD1⊂平面ACE, ∴BD1∥平面ACE.] (对应学生用书第112页) 与线面平行相关命题的真假判断 (1)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面 (2)(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( ) (1)D (2)A [(1)A项,α,β可能相交,故错误; B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误; C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误; D项,假设m,n垂直于同一平面,则必有m∥n,∴原命题正确,故D项正确. (2)A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB. ∵QD∩平面MNQ=Q,∴QD与平面MNQ相交, ∴直线AB与平面MNQ相交. B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ, ∴AB∥MQ. 又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ. C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ, ∴AB∥MQ. 又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ. D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ, ∴AB∥NQ. 又AB⊄平面MNQ,NQ⊂平面MNQ,∴AB∥平面MNQ.故选A.] [规律方法] 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项. 2.(1)结合题意构造或绘制图形,结合图形作出判断. (2)特别注意定理所要求的条件是否完备,图形是否有特殊情形,通过举反例否定结论或用反证法推断命题是否正确. [跟踪训练] (2017·唐山模拟)若m,n表示不同的直线,α,β表示不同的平面,则下列结论中正确的是( ) 【导学号:97190236】 A.若m∥α,m∥n,则n∥α B.若m⊂α,n⊂β,m∥β,n∥α,则α∥β C.若α⊥β,m∥α,n∥β,则m∥n D.若α∥β,m∥α,n∥m,n⊄β,则n∥β D [在A中,若m∥α,m∥n,则n∥α或n⊂α,故A错误.在B中,若m⊂α,n⊂β,m∥β,n∥α,则α与β相交或平行,故B错误.在C中,若α⊥β,m∥α,n∥β,则m与n相交、平行或异面,故C错误.在D中,若α∥β, m∥α,n∥m,n⊄β,则由线面平行的判定定理得n∥β,故D正确.] 直线与平面平行的判定与性质 ◎角度1 直线与平面平行的判定 (2016·全国卷Ⅲ)如图741,四棱锥PABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点. 图741 (1)证明MN∥平面PAB; (2)求四面体NBCM的体积. [解] (1)证明:由已知得AM=AD=2. 如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC, TN=BC=2. 又AD∥BC,故TNAM, 所以四边形AMNT为平行四边形, 于是MN∥AT. 因为AT⊂平面PAB,MN⊄平面PAB, 所以MN∥平面PAB. (2)因为PA⊥平面ABCD,N为PC的中点, 所以N到平面ABCD的距离为PA. 如图,取BC的中点E,连接AE. 由AB=AC=3得AE⊥BC,AE==. 由AM∥BC得M到BC的距离为, 故S△BCM=×4×=2. 所以四面体NBCM的体积VNBCM=×S△BCM×=. ◎角度2 线面平行性质定理的应用 如图742所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形. 图742 [证明] ∵CD∥平面EFGH, 而平面EFGH∩平面BCD=EF, ∴CD∥EF. 同理HG∥CD,∴EF∥HG. 同理HE∥GF, ∴四边形EFGH为平行四边形, ∴CD∥EF,HE∥AB, ∴∠HEF为异面直线CD和AB所成的角. 又∵CD⊥AB,∴HE⊥EF. ∴平行四边形EFGH为矩形. [规律方法] 1.证明线面平行的常用方法 (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α). (3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β). (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β). 2.利用判定定理判定线面平行,注意三条件缺一不可,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面找其交线. [跟踪训练] 如图743所示,斜三棱柱ABCA1B1C1中,点D,D1分别为AC,A1C1的中点. 图743 (1)证明:AD1∥平面BDC1; (2)证明:BD∥平面AB1D1. [证明] (1)∵D1,D分别为A1C1,AC的中点,四边形ACC1A1为平行四边形, ∴C1D1DA,∴四边形ADC1D1为平行四边形,∴AD1∥C1D,又AD1⊄平面BDC1,C1D⊂平面BDC1,∴AD1∥平面BDC1. (2)连接D1D, ∵BB1∥平面ACC1A1,BB1⊂平面BB1D1D,平面ACC1A1∩平面BB1D1D=D1D, ∴BB1∥D1D, 又∵D1,D分别为A1C1,AC的中点, ∴BB1=DD1, 故四边形BDD1B1为平行四边形,∴BD∥B1D1,又BD⊄平面AB1D1,B1D1⊂平面AB1D1,∴BD∥平面AB1D1. 平面与平面平行的判定与性质 如图744所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: 图744 (1)B,C,H,G四点共面; (2)平面EFA1∥平面BCHG. [证明] (1)∵G,H分别是A1B1,A1C1的中点, ∴GH是△A1B1C1的中位线,GH∥B1C1. 又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面. (2)在△ABC中,E,F分别为AB,AC的中点, ∴EF∥BC. ∵EF⊄平面BCHG,BC⊂平面BCHG, ∴EF∥平面BCHG. ∵A1GEB, ∴四边形A1EBG是平行四边形,则A1E∥GB. ∵A1E⊄平面BCHG,GB⊂平面BCHG, ∴A1E∥平面BCHG. ∵A1E∩EF=E, ∴平面EFA1∥平面BCHG. 在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA. [证明] 如图所示,连接HD,A1B, ∵D为BC1的中点,H为A1C1的中点, ∴HD∥A1B. 又HD⊄平面A1B1BA, A1B⊂平面A1B1BA, ∴HD∥平面A1B1BA. [规律方法] 证明面面平行的常用方法 (1)利用面面平行的定义. (2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”. (4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化. [跟踪训练] 在正方体ABCDA1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点.求证:平面MNP∥平面A1BD. 【导学号:97190237】 [证明] 如图,连接B1D1、B1C. ∵P、N分别是D1C1、B1C1的中点,∴PN∥B1D1. 又B1D1∥BD,∴PN∥BD. 又PN⊄平面A1BD,∴PN∥平面A1BD. 同理,MN∥平面A1BD,又PN∩MN=N, ∴平面PMN∥平面A1BD.查看更多