- 2021-06-16 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届二轮复习“数列与数学归纳法”专题提能课课时作业(全国通用)
2019届二轮复习 “数列与数学归纳法”专题提能课 课时作业(全国通用) A组——易错清零练 1.已知等比数列{an}的前n项和为Sn,S10=10,S30=130,则S40=( ) A.-510 B.400 C.400或-510 D.30或40 解析:选B 等比数列{an}中,S10,S20-S10,S30-S20,S40-S30成等比数列,且由题意知,S20>0,所以S10(S30-S20)=(S20-S10)2,即10(130-S20)=(S20-10)2,解得S20=40,又(S20-S10)(S40-S30)=(S30-S20)2,即30(S40-130)=902,解得S40=400. 2.在数列{an}中,a1=1,a2=2,an+2-an=1+(-1)n,那么S100的值为( ) A.2 500 B.2 600 C.2 700 D.2 800 解析:选B 当n为奇数时,an+2-an=0⇒an=1, 当n为偶数时,an+2-an=2⇒an=n, 故an= 于是S100=50+=2 600. 3.在数列{an}中,“an=2an-1,n=2,3,4,…”是“{an}是公比为2的等比数列”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选B 当an=0时,也有an=2an-1,n=2,3,4,…,但{an}不是等比数列,因此充分性不成立;当{an}是公比为2的等比数列时,有=2,n=2,3,4,…,即an=2an-1,n=2,3,4,…,所以必要性成立. 4.已知数列{an}的前n项和为Sn=n2+1,数列{bn}满足bn=,则bn=________. 解析:当n=1时,a1=S1=2, 因为Sn=n2+1,Sn-1=(n-1)2+1(n≥2), 两式相减得an=Sn-Sn-1=2n-1(n≥2), 所以当n≥2时,an=2n-1, 又a1=2不符合上式,所以an= 因为bn=,所以bn= 答案: 5.已知一个等比数列{an}的前4项之积为,第2,3项的和为,则数列{an}的公比q=________. 解析:设数列{an}的前4项分别为a,aq,aq2,aq3, 则可得 所以(1+q)4=64q2,即(1+q)2=±8q, 当q>0时,可得q2-6q+1=0, 解得q=3±2, 当q<0时,可得q2+10q+1=0, 解得q=-5±2. 综上,q=3±2或q=-5±2. 答案:3±2或-5±2 B组——方法技巧练 1.已知正项数列{an}中,a1=1,且(n+2)a-(n+1)a+anan+1=0,则它的通项公式为( ) A.an= B.an= C.an= D.an=n 解析:选B 因为(n+2)a-(n+1)a+anan+1=0,所以[(n+2)an+1-(n+1)an](an+1+an)=0.又{an}为正项数列,所以(n+2)an+1-(n+1)an=0,即=,则an=··…··a1=··…··1=.故选B. 2.(2019届高三·豫南十校联考)设f(x)是定义在R上的恒不为零的函数,且对任意的x,y∈R,都有f(x)·f(y)=f(x+y).若a1=,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是( ) A. B. C. D. 解析:选C 在f(x)·f(y)=f(x+y)中,令x=n,y=1,得f(n+1)=f(n)f(1),又a1=,an=f(n)(n∈N*),则an+1=an,所以数列{an}是首项和公比都是的等比数列,其前n项和Sn= =1-∈,故选C. 3.已知数列{an}中,a1=1,an+1=(n∈N*),则数列{an}的通项公式为________. 解析:因为an+1=(n∈N*), 所以=+1, 设+t=3, 所以3t-t=1, 解得t=, 所以+=3, 又+=1+=, 所以数列是以为首项,3为公比的等比数列, 所以+=×3n-1=, 所以=,所以an=. 答案:an= 4.(2018·惠州调研)已知数列{an}中,点(an,an+1)在直线y=x+2上,且首项a1=1. (1)求数列{an}的通项公式; (2)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,请写出适合条件Tn≤Sn的所有n的值. 解:(1)根据已知a1=1,an+1=an+2, 即an+1-an=2=d, 所以数列{an}是首项为1,公差为2的等差数列, an=a1+(n-1)d=2n-1. (2)数列{an}的前n项和Sn=n2. 等比数列{bn}中,b1=a1=1,b2=a2=3, 所以q=3,bn=3n-1. 数列{bn}的前n项和Tn==. Tn≤Sn即≤n2,又n∈N*, 所以n=1或2. C组——创新应用练 1.(2018·襄阳四校联考)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为: (1)构造数列1,,,,…,; ① (2)将数列①的各项乘以,得到一个新数列a1,a2,a3,a4,…,an. 则a1a2+a2a3+a3a4+…+an-1an=( ) A. B. C. D. 解析:选C 依题意可得新数列为,,,…,×,所以a1a2+a2a3+…+an-1an===×=.故选C. 2.已知数列{an}的通项公式为an=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·an为整数的n叫做“优数”,则在(0,2 018]内的所有“优数”的和为( ) A.1 024 B.2 012 C.2 026 D.2 036 解析:选C a1·a2·a3·…·an=log23·log34·log45·…·log(n+1)(n+2)=log2(n+2)=k,k∈Z,令0查看更多