2018届二轮复习专题14一条特殊的线__函数的切线学案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018届二轮复习专题14一条特殊的线__函数的切线学案(全国通用)

专题14 一条特殊的线--函数的切线 ‎ 基础知识回顾:‎ ‎(一)与切线相关的定义 ‎1、切线的定义:在曲线的某点A附近取点B,并使B沿曲线不断接近A。这样直线AB的极限位置就是曲线在点A的切线。‎ ‎(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A附近的点向不断接近,当与距离非常小时,观察直线是否稳定在一个位置上 ‎(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数在处的切线,与曲线有两个公共点。‎ ‎(3)在定义中,点不断接近包含两个方向,点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线的极限位置唯一时,这个极限位置才能够成为在点处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如在处,通过观察图像可知,当左边的点向其无限接近时,割线的极限位置为,而当右边的点向其无限接近时,割线的极限位置为,两个不同的方向极限位置不相同,故在处不含切线 ‎(4)由于点沿函数曲线不断向接近,所以若在处有切线,那么必须在点及其附近有定义(包括左边与右边)‎ ‎2、切线与导数:设函数上点在附近有定义且附近的点,则割线斜率为:‎ 当无限接近时,即接近于零,直线到达极限位置时的斜率表示为:‎ ‎,‎ 即切线斜率,由导数定义可知:。故为在处切线的斜率。这是导数的几何意义。‎ ‎3、从导数的几何意义中可通过数形结合解释几类不含导数的点:‎ ‎(1)函数的边界点:此类点左侧(或右侧)的点不在定义域中,从而某一侧不含割线,也就无从谈起极限位置。故切线不存在,导数不存在;与此类似还有分段函数如果不连续,则断开处的边界值也不存在导数 ‎(2)已知点与左右附近点的割线极限位置不相同,则不存在切线,故不存在导数。例如前面例子在处不存在导数。此类情况多出现在单调区间变化的分界处,判断时只需选点向已知点左右靠近,观察极限位置是否相同即可 ‎(3)若在已知点处存在切线,但切线垂直轴,则其斜率不存在,在该点处导数也不存在。例如:在处不可导 综上所述:(1)-(3)所谈的点均不存在导数,而(1)(2)所谈的点不存在切线,(3)中的点存在切线,但没有导数。由此可见:某点有导数则必有切线,有切线则未必有导数。‎ 方法与技巧:‎ ‎1、求切线方程的方法:一点一方向可确定一条直线,在求切线时可考虑先求出切线的斜率(切点导数)与切点,在利用点斜式写出直线方程 ‎2、若函数的导函数可求,则求切线方程的核心要素为切点的横坐标,因为可“一点两代”,代入到原函数,即可得到切点的纵坐标,代入到导函数中可得到切线的斜率,从而一点一斜率,切线即可求。所以在解切线问题时一定要盯住切点横坐标,千方百计的把它求解出来。‎ ‎3、求切线的问题主要分为两大类,一类是切点已知,那么只需将切点横坐标代入到原函数与导函数中求出切点与斜率即可,另一类是切点未知,那么先要设出切点坐标,再考虑利用条件解出核心要素,进而转化成第一类问题 ‎4、在解析几何中也学习了求切线的方法,即先设出切线方程,再与二次方程联立利用 求出参数值进而解出切线方程。解析几何中的曲线与函数同在坐标系下,所以两个方法可以互通。若某函数的图像为圆锥曲线,二次曲线的一部分,则在求切线时可用解析的方法求解,例如:(图像为圆的一部分)在处的切线方程,则可考虑利用圆的切线的求法进行解决。若圆锥曲线可用函数解析式表示,像焦点在轴的抛物线,可看作关于的函数,则在求切线时可利用导数进行快速求解(此方法也为解析几何中处理焦点在轴的抛物线切线问题的重要方法)‎ ‎5、在处理切线问题时要注意审清所给已知点是否为切点。“在某点处的切线”意味着该点即为切点,而“过某点的切线”则意味着该点有可能是切点,有可能不是切点。如果该点恰好在曲线上那就需要进行分类讨论了。‎ 应用举例:‎ ‎【例1】【安徽省十校联盟2018届高三摸底考试】设函数,则在点处的切线方程为__________.‎ ‎【答案】‎ ‎【例2】下列曲线中,在处切线的倾斜角为的是()‎ A.B.‎ C.D.‎ ‎【答案】D ‎【解析】在x=1处切线的倾斜角为,即有切线的斜率为tan=−1.‎ 对于A,的导数为,可得在x=1处切线的斜率为5;‎ 对于B,y=xlnx的导数为y′=1+lnx,可得在x=1处切线的斜率为1;‎ 对于C,的导数为,可得在x=1处切线的斜率为;‎ 对于D,y=x3−2x2的导数为y′=3x2−4x,可得在x=1处切线的斜率为3−4=−1. ‎ 本题选择D选项.‎ ‎【例3】在函数的所有切线中,斜率最小的切线方程为__________.‎ ‎【答案】‎ ‎【解析】,‎ ‎∴当x=1时,切线的斜率最小值且为2,‎ 当x=1时,,∴切点为,‎ ‎∴切线的方程为,即. ‎ ‎【例4】若直线与曲线相切,则__________.‎ ‎【答案】‎ ‎【解析】即求曲线过原点切线的斜率,设切点为,斜率,切线方程为,将原点坐标代入化简得,故.‎ ‎【例5】直线与曲线及都相切,则直线的方程为__________.‎ ‎【答案】‎ ‎ 实战演练:‎ ‎1.【安徽省合肥一中、马鞍山二中等六校教育研究会2018届高三上学期第一次联考】已知函数,直线过原点且与曲线相切,其切点的横坐标从小到大依次排列为,则下列说法正确的是()‎ A. B.数列为等差数列 C. D.‎ ‎【答案】D 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.‎ ‎2.【河南省名校联盟2018届高三第一次段考】已知函数的图象在和处的切线相互垂直,则()‎ A.B‎.0C.1D.2‎ ‎【答案】A ‎ ‎【解析】因为,所以,由题意有,所以,选A. ‎ ‎3.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()‎ A.4 B. C.2 D.‎ ‎【答案】A ‎4.已知函数过点作曲线的两条切线,切点分别为,设,若对任意的正整数,在区间内总存在个数,使得不等式,则的最大值为()‎ A.5B‎.6C.7D.8‎ ‎【答案】B ‎【解析】设,因,故,由题意过点可得;同理可得,因此是方程的两个根,则,故。由于在 上单调递增,且,所以,因此问题转化为对一切正整数恒成立。又,故,则,由于是正整数,所以,即的最大值为,应选答案B。‎ ‎5.设曲线在点处的切线与轴的交点的横坐标为,则__________.‎ ‎【答案】‎ ‎ ‎ ‎6.【江苏省南京师范大学附属中学2017届高三高考模拟】设直线与曲线与均相切,切点分别为则__________.‎ ‎【答案】 ‎ ‎【解析】因为函数与的导数分别为,所以由导数的几何意义可得切线的斜率分别为,切线方程为,由题设 ‎,则,应填答案。‎ 点睛:解答本题的关键是先对两个函数与分别求导,再由导数的几何意义分别求出切线在各自的切点处的斜率,进而分别写出其切线方程,然后依据题设条件建立方程组,从而为求出提供条件。‎ ‎7.已知曲线在点处的切线与直线垂直,则实数的值为()‎ A. B. C. D.‎ ‎【答案】C ‎ 8.【安徽省亳州市二中2017届高三下学期教学质量检测】若过点与曲线相切的直线有两条,则实数的取值范围是()‎ A.B.C.D.‎ ‎【答案】B ‎【解析】设切点为(),,所以切线方程为:,代入,得,即这个关于的方程有两个解.化简方程为,即,令(),,,在 上单调递增,在上单调递减,,g(1)=0,所以,所以.选B.‎ ‎【点睛】‎ 对于曲线切点问题,一定要看清楚是在那个点,还是过那个点,如果不知道切点,需要自己设切点.通过求导求出切线方程,再代入过的那一定点.‎ ‎9.已知曲线.‎ ‎(Ⅰ)当时,求曲线在处的切线方程;‎ ‎(Ⅱ)过点(作曲线的切线,若所有切线的斜率之和为1,求的值.‎ ‎【答案】(I);(Ⅱ).‎ ‎(Ⅱ)设曲线的切点为(x0,y0),则,‎ 所以切线方程为.‎ 又因为切点(x0,y0)既在曲线f(x)上,又在切线上,所以联立得 可得x0=0或x0=3,‎ 所以两切线的斜率之和为-a+(9-a)=9-‎2a=1,∴a=4.‎ ‎【方法点晴】本题主要考查导数的几何意义、利用导数求曲线切线,属于中档题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.‎ ‎10.已知曲线 ‎(1)求曲线在点处的切线方程;‎ ‎(2)过原点作曲线的切线,求切线方程.‎ ‎【答案】(1);(2).‎
查看更多

相关文章

您可能关注的文档