2020届二轮复习空间的平行与垂直教案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020届二轮复习空间的平行与垂直教案(全国通用)

‎2020届二轮复习 空间的平行与垂直 教案(全国通用)‎ ‎1.点、线、面的位置关系 ‎(1)平面的基本性质 名称 图形 文字语言 符号语言 公理1‎ 如果一条直线上的两点在一个平面内,那么这条直线在此平面内 ⇒l⊂α 公理2‎ 过不在一条直线上的三点有且只有一个平面 若A、B、C三点不共线,则A、B、C在同一平面α内且α是唯一的.‎ 公理3‎ 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.‎ 平面α与β不重合,若P∈α,且P∈β,则α∩β=a,且P∈a ‎(2)平行公理、等角定理 公理4:若a∥c,b∥c,则a∥b.‎ 等角定理:若OA∥O1A1,OB∥O1B1,则∠AOB=∠A1O1B1或∠AOB+∠A1O1B1=180°.‎ ‎2.直线、平面的平行与垂直 定理名称 文字语言 图形语言 符号语言 线面平行的判定定理 平面外一条直线与平面内的一条直线平行,则这条直线与此平面平行 ‎ ‎ ⇒a∥α 线面平行的性质定理 一条直线与一个平面平行,则过这条直线的任何一个平面与此平面的交线与该直线平行 a∥α,a⊂β,α∩β=b,⇒a∥b 面面平行的判定定理 如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行 a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β 面面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 α∥β且γ∩α=a且γ∩β=b⇒a∥b 线面垂直的判定定理 一条直线和一个平面内的两条相交直线都垂直,则该直线与此平面垂直 a⊂α,b⊂α,a∩b=A,l⊥a,l⊥b⇒l⊥α 线面垂直的性质定理 垂直于同一平面的两条直线平行 a⊥α,b⊥α⇒a∥b 面面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直 a⊥α,a⊂β,⇒α⊥β 面面垂直的性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 α⊥β,b∈β,α∩β=a,b⊥a⇒b⊥α ‎3.熟练掌握常见几何体(柱、锥、台、球)的几何特征,明确各种几何体的直观图与三视图特征及相关面积体积的计算公式,熟练掌握线线、线面、面面平行与垂直等位置关系的判定与性质定理及公理,熟练进行线线、线面、面面平行与垂直关系的相互转化是解答相关几何题的基础.‎ ‎【误区警示】‎ ‎1.应用线面、面面平行与垂直的判定定理、性质定理时,必须按照定理的要求找足条件.‎ ‎2.作辅助线(面)是立体几何证题中常用技巧,作图时要依据题设条件和待求(证)结论之间的关系结合有关定理作图.注意线线、线面、面面平行与垂直关系的相互转化.‎ ‎3.若a、b、c代表直线或平面,△代表平行或垂直,在形如⇒b△c的命题中,要切实弄清有哪些是成立的,有哪些是不成立的.例如a、b、c中有两个为平面,一条为直线,命题⇒α∥β是成立的.⇒α∥β是不成立的. ‎ 由得,‎ 所以,故.‎ 因此,直线与平面所成的角的正弦值是.‎ 方法二:‎ ‎(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.‎ 由题意知各点坐标如下:‎ 因此 由得.‎ 由得.‎ 所以平面.‎ ‎(Ⅱ)设直线与平面所成的角为.‎ 由(Ⅰ)可知 设平面的法向量.‎ 由即可取.‎ 所以.‎ 因此,直线与平面所成的角的正弦值是.‎ ‎【变式探究】【2017江苏,15】 如图,在三棱锥A-BCD中,AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, ‎ 点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD. ‎ 求证:(1)EF∥平面ABC;‎ ‎ (2)AD⊥AC.‎ ‎(第15题)‎ A D B C E F ‎【答案】(1)见解析(2)见解析 ‎【解析】证明:(1)在平面内,因为AB⊥AD, ,所以.‎ 又因为平面ABC, 平面ABC,所以EF∥平面ABC.‎ ‎(2)因为平面ABD⊥平面BCD,‎ 平面平面BCD=BD, ‎ 平面BCD, ,‎ 所以平面.‎ 因为平面,所以 .‎ 又AB⊥AD,, 平面ABC, 平面ABC,‎ 所以AD⊥平面ABC, ‎ 又因为AC平面ABC,‎ 所以AD⊥AC.‎ ‎【变式探究】如图,在直三棱柱ABC-A1B‎1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,. ‎ 求证:(1)直线DE∥平面A1C1F;‎ ‎(2)平面B1DE⊥平面A1C1F. ‎ ‎【答案】(1)详见解析(2)详见解析 ‎【解析】证明:(1)在直三棱柱中,‎ 在三角形ABC中,因为D,E分别为AB,BC的中点.‎ 所以,于是 又因为DE平面平面 所以直线DE//平面 ‎(2)在直三棱柱中,‎ 因为平面,所以 又因为 所以平面 因为平面,所以 又因为 所以 因为直线,所以 ‎【变式探究】如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.‎ 求证:(1)DE∥平面AA1C1C;‎ ‎(2)BC1⊥AB1.‎ 证明 (1)由题意知,E为B1C的中点, ‎ 又D为AB1的中点,因此DE∥AC.‎ 又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,‎ 所以DE∥平面AA1C1C.‎ ‎(2)因为棱柱ABC-A1B1C1是直三棱柱,‎ 所以CC1⊥平面ABC.‎ 因为AC⊂平面ABC,所以AC⊥CC1.‎ 又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,‎ 所以AC⊥平面BCC1B1.‎ 又因为BC1⊂平面BCC1B1,‎ 所以BC1⊥AC.‎ 因为BC=CC1,‎ 所以矩形BCC1B1是正方形,‎ 因此BC1⊥B1C.‎ 因为AC,B1C⊂平面B1AC,AC∩B1C=C,‎ 所以BC1⊥平面B1AC.‎ 又因为AB1⊂平面B1AC,‎ 所以BC1⊥AB1.‎ ‎【举一反三】如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,.‎ ‎(Ⅰ)证明:平面;‎ ‎(Ⅱ)求二面角的正弦值.‎ ‎【答案】(Ⅰ)详见解析;(Ⅱ).‎ ‎【解析】‎ ‎(Ⅰ)由已知得,,又由得,故.‎ 因此,从而.由,得.‎ 由得.所以,.‎ 于是,‎ 故.‎ 又,而,‎ 所以.‎ ‎(Ⅱ)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即 ‎,所以可取.设是平面的法向量,则,即,所以可取.于是,.因此二面角的正弦值是.‎ ‎【变式探究】如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则(  )‎ A.∠A′DB≤α     B.∠A′DB≥α ‎ C.∠A′CB≤α     D.∠A′CB≥α 解析 极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB都可以大于0,排除A,C.故选B.‎ 答案 B 高频考点三 平面图形的折叠问题 例 3、(2018年全国I卷理数)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.‎ ‎(1)证明:平面平面;‎ ‎(2)求与平面所成角的正弦值.‎ ‎【答案】(1)证明见解析.‎ ‎(2) .‎ ‎【解析】‎ ‎(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.‎ 又平面ABFD,所以平面PEF⊥平面ABFD.‎ ‎(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.‎ 以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.‎ 由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.‎ 可得.‎ 则为平面ABFD的法向量.‎ 设DP与平面ABFD所成角为,则.‎ 所以DP与平面ABFD所成角的正弦值为.‎ ‎【变式探究】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.‎ ‎(1)证明:AC⊥HD′;‎ ‎(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′-ABCFE的体积.‎ ‎【解析】 (1)证明:由已知得AC⊥BD,AD=CD.‎ 又由AE=CF得=,故AC∥EF.‎ 由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′.‎ ‎(2)由EF∥AC得==.‎ 由AB=5,AC=6得DO=BO==4.‎ 所以OH=1,D′H=DH=3.‎ 于是OD′2+OH2=(2)2+12=9=D′H2,‎ 故OD′⊥OH.‎ 由(1)知,AC⊥HD′,又AC⊥BD,BD∩HD′=H,‎ 所以AC⊥平面BHD′,于是AC⊥OD′.‎ 又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.‎ 又由=得EF=.‎ 五边形ABCFE的面积S=×6×8-××3=.‎ 所以五棱锥D′-ABCFE的体积V=××2=.‎ ‎【方法技巧】‎ ‎ 平面图形翻折问题的求解方法 ‎(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.‎ ‎(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.‎ ‎【变式探究】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点 G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.‎ ‎(1)求证:GR⊥平面PEF;‎ ‎(2)若正方形ABCD的边长为4,求三棱锥P-DEF的内切球的半径.‎ 解析:(1)证明:在正方形ABCD中,∠A,∠B,∠C为直角.‎ ‎∴在三棱锥P-DEF中,PE,PF,PD两两垂直.‎ ‎∴PD⊥平面PEF.‎ ‎∵=,即=,∴在△PDH中,RG∥PD.‎ ‎∴GR⊥平面PEF.‎ ‎(2)正方形ABCD边长为4.‎ 由题意知,PE=PF=2,PD=4,EF=2,DF=2.‎ ‎∴S△PEF=2,S△DPF=S△DPE=4.‎ S△DEF=×2×=6.‎ 设三棱锥P-DEF内切球的半径为r,‎ 则三棱锥的体积VP-DEF=××2×2×4=(S△PEF+2S△DPF+S△DEF)·r,解得r=.‎ ‎∴三棱锥P-DEF的内切球的半径为.‎ ‎1. (2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.‎ ‎(Ⅰ)证明:AB1⊥平面A1B1C1;‎ ‎(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.‎ ‎【答案】(Ⅰ)见解析 ‎(Ⅱ)‎ ‎【解析】‎ 方法一:‎ ‎(Ⅰ)由得,‎ 所以.‎ 故.‎ 由,得,‎ 由得,‎ 由,得,所以,故.‎ 因此平面.‎ ‎(Ⅱ)如图,过点作,交直线于点,连结.‎ 由平面得平面平面,‎ 由得平面,‎ 所以是与平面所成的角. ‎ 由得,‎ 所以,故.‎ 因此,直线与平面所成的角的正弦值是.‎ ‎2. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.‎ ‎(Ⅰ)求证:AC⊥平面BEF;‎ ‎(Ⅱ)求二面角B-CD-C1的余弦值;‎ ‎(Ⅲ)证明:直线FG与平面BCD相交.‎ ‎【答案】(1)证明见解析 ‎(2) B-CD-C1的余弦值为 ‎(3)证明过程见解析 ‎(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.‎ 又CC1⊥平面ABC,∴EF⊥平面ABC.‎ ‎∵BE平面ABC,∴EF⊥BE.‎ 如图建立空间直角坐称系E-xyz.‎ 由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).‎ ‎∴,‎ 设平面BCD的法向量为,‎ ‎∴,∴,‎ 令a=2,则b=-1,c=-4,‎ ‎∴平面BCD的法向量,‎ 又∵平面CDC1的法向量为,‎ ‎∴.‎ 由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.‎ ‎(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),‎ ‎∴,∴,∴与不垂直,‎ ‎∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.‎ ‎3. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.‎ ‎(1)求异面直线BP与AC1所成角的余弦值;‎ ‎(2)求直线CC1与平面AQC1所成角的正弦值.‎ ‎【答案】(1)‎ ‎(2)‎ ‎【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.‎ 因为AB=AA1=2,‎ 所以.‎ ‎(1)因为P为A1B1的中点,所以,‎ 从而,‎ 故.‎ 因此,异面直线BP与AC1所成角的余弦值为.‎ ‎(2)因为Q为BC的中点,所以,‎ 因此,.‎ 设n=(x,y,z)为平面AQC1的一个法向量,‎ 则即 不妨取,‎ 设直线CC1与平面AQC1所成角为,‎ 则,‎ 所以直线CC1与平面AQC1所成角的正弦值为.‎ ‎4. (2018年江苏卷)在平行六面体中,.‎ 求证:(1);‎ ‎(2).‎ ‎【答案】答案见解析 ‎【解析】‎ 证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.‎ 因为AB平面A1B1C,A1B1平面A1B1C,‎ 所以AB∥平面A1B1C.‎ ‎(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.‎ 又因为AA1=AB,所以四边形ABB1A1为菱形,‎ 因此AB1⊥A1B.‎ 又因为AB1⊥B1C1,BC∥B1C1,‎ 所以AB1⊥BC.‎ 又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,‎ 所以AB1⊥平面A1BC.‎ 因为AB1平面ABB1A1,‎ 所以平面ABB1A1⊥平面A1BC.‎ ‎1.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(  )‎ A B C D 解析:B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.‎ 答案:A ‎2.(2017·山东卷)由四棱柱ABCD-A1B‎1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.‎ ‎(1)证明:A1O∥平面B1CD1; ‎ ‎(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.‎ 证明:(1)取B1D1的中点O1,连接CO1,A1O1,‎ 由于ABCD-A1B‎1C1D1是四棱柱,‎ 所以A1O1∥OC,A1O1=OC,‎ 因此四边形A1OCO1为平行四边形,所以A1O∥O‎1C.‎ 又O‎1C⊂平面B1CD1,A1O⊄平面B1CD1,‎ 所以A1O∥平面B1CD1.‎ ‎(2)因为AC⊥BD,E,M分别为AD和OD的中点,‎ 所以EM⊥BD,‎ 又A1E⊥平面ABCD,BD⊂平面ABCD,‎ 所以A1E⊥BD,‎ 因为B1D1∥BD,‎ 所以EM⊥B1D1,A1E⊥B1D1.‎ 又A1E,EM⊂平面A1EM,A1E∩EM=E,‎ 所以B1D1⊥平面A1EM.‎ 又B1D1⊂平面B1CD1,‎ 所以平面A1EM⊥平面B1CD1.‎ ‎3.【2017江苏,15】 如图,在三棱锥A-BCD中,AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD. ‎ 求证:(1)EF∥平面ABC;‎ ‎ (2)AD⊥AC.‎ ‎(第15题)‎ A D B C E F ‎【答案】(1)见解析(2)见解析 ‎【解析】证明:(1)在平面内,因为AB⊥AD, ,所以.‎ 又因为平面ABC, 平面ABC,所以EF∥平面ABC.‎ ‎(2)因为平面ABD⊥平面BCD,‎ 平面平面BCD=BD, ‎ 平面BCD, ,‎ 所以平面.‎ 因为平面,所以 .‎ 又AB⊥AD,, 平面ABC, 平面ABC,‎ 所以AD⊥平面ABC,‎ 又因为AC平面ABC,‎ 所以AD⊥AC.‎ ‎1.【2016高考浙江理数】已知互相垂直的平面交于直线l.若直线m,n满足则( )‎ A.m∥l B.m∥n C.n⊥l D.m⊥n ‎【答案】C ‎【解析】由题意知,.故选C.‎ ‎2.【2016高考新课标2理数】 是两个平面,是两条直线,有下列四个命题:‎ ‎(1)如果,那么.‎ ‎(2)如果,那么.‎ ‎(3)如果,那么.‎ ‎(4)如果,那么与所成的角和与所成的角相等.‎ 其中正确的命题有 . (填写所有正确命题的编号)‎ ‎【答案】②③④‎ ‎【解析】对于①,,则的位置关系无法确定,故错误;对于②,因为,所以过直线作平面与平面相交于直线,则,因为,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.‎ ‎3.【2016高考浙江理数】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .‎ ‎【答案】‎ ‎【解析】中,因为,所以.‎ 由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.‎ 在中,,.‎ 由余弦定理可得,所以.‎ 由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).‎ 过作直线的垂线,垂足为.设,则,‎ 即,解得.‎ 而的面积.‎ 当平面PBD⊥平面BDC时:‎ 四面体的体积.‎ 观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为 ‎ ‎4.【2016高考新课标1卷】平面过正方体ABCD-A1B‎1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面AB B‎1A1=n,则m、n所成角的正弦值为 ‎(A) (B) (C) (D)‎ ‎【答案】A ‎【解析】如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.过作,交的延长线于点E,连接,则为.连接,过B1作,交的延长线于点,则为.连接BD,则,则所成的角即为所成的角,为,故所成角的正弦值为,选A.‎ ‎5.【2016高考新课标3理数】在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是( )‎ ‎(A)4π (B) (C)6π (D) ‎ ‎【答案】B ‎【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.‎ ‎6.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单 ‎ 位:m),则该四棱锥的体积为_______m3.‎ ‎【答案】2‎ ‎【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,‎ 因此所求四棱锥的体积.故答案为2.‎ ‎1.【2015高考浙江,理8】如图,已知,是的中点,沿直线将折成,所成二面角的平面角为,则( ) ‎ A. B. C. D. ‎ ‎【答案】B.‎ ‎【解析】设,设,则由题意,在空间图形中,设,‎ 在中,,‎ 在空间图形中,过作,过作,垂足分别为,,‎ 过作,连结,∴,‎ 则就是二面角的平面角,∴,‎ 在中,,,‎ 同理,,,故,‎ 显然面,故,‎ 在中,,‎ 在中, ‎ ‎,‎ ‎∵,,∴(当时取等号),‎ ‎∵,,而在上为递减函数,∴,故选B.‎ ‎【考点定位】立体几何中的动态问题 ‎2.【2015高考湖南,理10】某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )‎ A. B. C. D.‎ ‎【答案】A.‎ ‎【解析】分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为,,,长方体上底面截圆锥的截面半径为,则,如下图所示,圆锥的轴截面如图所示,则可知,而长方体的体积 ‎,当且仅当,时,等号成立,此时利用率为,故选A.‎ ‎【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.‎ ‎3.【2015高考福建,理7】若 是两条不同的直线, 垂直于平面 ,则“ ”是“ 的 ( ) ‎ A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 ‎【答案】B ‎【解析】若,因为垂直于平面,则或;若,又垂直于平面,则,所以“ ”是“ 的必要不充分条件,故选B.‎ ‎4.【2015高考四川,理14】如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点。设异面直线EM与AF所成的角为,则的最大值为 .‎ ‎【答案】‎ ‎【解析】建立坐标系如图所示.设,则.设,则,由于异面直线所成角的范围为,所以.,令,则,当时取等号.所以,当时,取得最大值.‎ ‎5.【2015高考浙江,理13】如图,三棱锥中,,点分别是的中点,则异面直线,所成的角的余弦值是 .‎ ‎【答案】.‎ ‎6.【2015高考新课标2,理19】(本题满分12分)‎ 如图,长方体中,,,,点,分别在,上,.过点,的平面与此长方体的面相交,交线围成一个正方形.‎ D D1‎ C1‎ A1‎ E F A B C B1‎ ‎(Ⅰ)在图中画出这个正方形(不必说出画法和理由);‎ ‎(Ⅱ)求直线与平面所成角的正弦值.‎ ‎【答案】(Ⅰ)详见解析;(Ⅱ).‎ ‎【解析】(Ⅰ)交线围成的正方形如图:‎ ‎(Ⅱ)作,垂足为,则,,因为为正方形,所以.于是,所以.以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,则,,,,,.设是平面的法向量,则即所以可取.又,故.所以直线与平面所成角的正弦值为.‎ ‎7.【2015江苏高考,16】(本题满分14分)‎ 如图,在直三棱柱中,已知,,设的中点为,.求证:(1);‎ ‎(2).‎ A B C D E A1‎ B1‎ C1‎ ‎【答案】(1)详见解析(2)详见解析 ‎【解析】(1)由三棱锥性质知侧面为平行四边形,因此点为的中点,从而由三角形中位线性质得,再由线面平行判定定理得(2)因为直三棱柱中,所以侧面为正方形,因此,又,(可由直三棱柱推导),因此由线面垂直判定定理得,从而,再由线面垂直判定定理得,进而可得 试题解析:(1)由题意知,为的中点,‎ 又为的中点,因此.‎ 又因为平面,平面,‎ 所以平面.‎ ‎(2)因为棱柱是直三棱柱,‎ 所以平面.‎ 因为平面,所以.‎ 又因为,平面,平面,,‎ 所以平面.‎ 又因为平面,所以.‎ 因为,所以矩形是正方形,因此.‎ 因为,平面,,所以平面.‎ 又因为平面,所以.‎ ‎8.【2015高考浙江,理17】如图,在三棱柱-中,,,,在底面的射影为的中点,为的中点.‎ ‎(1)证明:D平面;‎ ‎(2)求二面角-BD-的平面角的余弦值.‎ ‎【答案】(1)设为的中点,由题意得平面,∴,∵,‎ ‎∴,故平面,由,分别,的中点,得且 ‎,从而,∴四边形为平行四边形,故,又∵‎ 平面,∴平面;(2)作,且,连结,‎ 由,,得,由,‎ ‎,得,由,得,因此为二面角 的平面角,由,,,得,‎ ‎,由余弦定理得,.‎ ‎1. 【2014高考安徽卷理第8题】从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有( )‎ A.24对 B.30对 C.48对 D.60对 ‎【答案】C ‎【解析】在正方体中,与上平面中一条对角线成的直线有,,,共八对直线,与上平面中另一条对角线的直线也有八对直线,所以一个平面中有16对直线,正方体6个面共有对直线,去掉重复,则有对.故选C.‎ ‎2. 【2014辽宁高考理第4题】已知m,n表示两条不同直线,表示平面,下列说法正确的是( )‎ A.若则 B.若,,则 C.若,,则 D.若,,则 ‎【答案】B ‎【解析】若A.若则与可能平行、相交、异面,故A错误; B.若,,则,显然成立;C.若,,则或故C错误;D.若,,则或或与相交.‎ ‎3. 【2014四川高考理第8题】如图,在正方体中,点为线段的中点.设点在线段上,直线与平面所成的角为,则的取值范围是( )‎ A. B. C. D.‎ ‎【答案】B ‎【解析】 设正方体的棱长为,则,所以,.‎ 又直线与平面所成的角小于等于,而为钝角,所以的范围为,选B.‎ ‎4. 【2014高考湖南理第19题】如图6,四棱柱的所有棱长都相等, ,四边形和四边形为矩形.‎ ‎(1)证明:底面;‎ ‎(2)若,求二面角的余弦值.‎ ‎【答案】(1) 详见解析 (2) ‎ ‎【解析】‎ ‎ (1)证明:四棱柱的所有棱长都相等 四边形和四边形均为菱形 分别为中点 四边形和四边形为矩形 且 又且底面 底面.‎ ‎(2)法1::过作的垂线交于点,连接.不妨设四棱柱的边长为.‎ 底面且底面面 面 又面 四边形为菱形 又且,面 面 又面 又且,面 面 为二面角的平面角,则 且四边形为菱形 ‎,,‎ 则 再由的勾股定理可得,‎ 则,所以二面角的余弦值为.‎ 法2:因为四棱柱的所有棱长都相等,所以四边形是菱形,因此,又面,从而两两垂直,如图以为坐标原点,所在直线分别为轴,轴,轴建立三维直角坐标系,不妨设,因为,所以,,于是各点的坐标为:,已知是平面的一个法向量,设是平面的一个法向量,则, ,取,则,‎ 所以, ,故二面角的余弦值为.‎ ‎【考点定位】线面垂直、二面角、勾股定理 ‎ ‎5、【2014高考江苏第16题】如图在三棱锥中,分别为棱的中点,已知 ‎,‎ 求证(1)直线平面;‎ ‎(2)平面平面 ‎ ‎【答案】证明见解析.‎ ‎【解析】(1)由于分别是的中点,则有,又,,所以.‎ ‎(2)由(1),又,所以,又是中点,所以,,又,所以,所以,是平面内两条相交直线,所以,又,所以平面平面.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档