- 2021-06-16 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习人教A版随机抽样(1)学案
9.1 随机抽样 [知识梳理] 1.简单随机抽样 (1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样 (1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样. (2)系统抽样的操作步骤 假设要从容量为N的总体中抽取容量为n的样本. ①先将总体的N个个体编号; ②确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,取k=;当不是整数时,可随机地从总体中剔除余数x,取k=; ③在第1段用简单随机抽样确定第一个个体编号l(l≤k); ④按照一定的规则抽取样本,通常是将l加上间隔k得到第2 个个体编号1+k,再加k得到第3个个体编号1+2k,依次进行下去,直到获取整个样本. 3.分层抽样 (1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 注:三种抽样方法的比较 [诊断自测] 1.概念思辨 (1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ) (2)系统抽样在起始部分抽样时采用简单随机抽样.( ) (3)分层抽样是将每层各抽取相同的个体数构成样本,分层抽样为保证各个个体等可能入样,必须进行每层等可能抽样.( ) (4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( ) 答案 (1)× (2)√ (3)× (4)× 2.教材衍化 (1)(必修A3P64A组T3)某单位有职工140人,其中科技人员91人,行政干部28人,职员21人,为了了解职工的某种情况要从中抽取一个容量为20的样本.以下抽样方法中,依简单随机抽样、系统抽样、分层抽样的顺序是( ) ①将140人从1~140编号,然后制出有编号1~140的140个形状大小相同的号签;将号签放入同一个箱子时进行均匀搅拌,并从中抽取20个号签,编号与签号相同的20人选出. ②将140个人分成20组,每组7个人,并将每组7人按1~7编号,在第一组中采用抽签的方法抽出K号(1≤K≤7),则其余各组K号也被抽到,20个人被选出. ③按20∶140=1∶7的比例,从科技人员中抽取13人,从行政人员中抽取4人,从职员中抽取3人,从各类人员中抽取所需人员时,均采用随机数表法,可抽出20人. A.②①③ B.②③① C.①②③ D.③②① 答案 C 解析 从简单随机抽样、系统抽样、分层抽样各自的操作步骤入手.故选C. (2)(必修A3P64A组T4)某初级中学有270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将统一随机编号1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192, 219,246,270. 下列关于上述样本的结论正确的是( ) A.②③都不能为系统抽样 B.②④都不能为分层抽样 C.①④都可能为系统抽样 D.①③都可能为分层抽样 答案 D 解析 从抽得号码的编号入手,若为系统抽样,则抽样间隔应该相等,若可能为分层抽样,则一、二、三年级应按4∶3∶3的比例进行抽取,即1~108号抽取4人,109~189号抽取3人,190~270号应抽取3人.故选D. 3.小题热身 (1)(2013·全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 答案 C 解析 该地区不同学段学生视力情况有较大差异,不适合采用简单随机抽样和系统抽样,又男、女生视力差别不大,故不适合按性别分层抽样.故选C. (2)(2018·长春模拟)将高一(9)班参加社会实践编号为:1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是________. 答案 17 解析 根据系统抽样的概念,所取的4个样本的编号应成等差数列,故所求编号为17. 题型1 简单随机抽样 下列抽取样本的方式属于简单随机抽样的个数为( ) ①从无限多个个体中抽取100个个体作为样本; ②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里; ③从20件玩具中一次性抽取3件进行质量检验; ④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. A.0 B.1 C.2 D.3 应用简单随机抽样的定义进行判断. 答案 A 解析 ①不是简单随机抽样.因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样,故选A. (2018·河北模拟)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ) 7816 6572 0802 6314 0701 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 A.08 B.07 C.02 D.01 随机数法. 答案 D 解析 选出的5个个体的编号依次是08,02,14,07,01,故选D. 方法技巧 1.简单随机抽样的特点 (1)被抽取样本的总体中的个体数是有限的;(2)是逐个抽取;(3)是不放回抽取;(4)是等可能抽取.只有四个特点都满足的抽样才是简单随机抽样. 2.抽签法与随机数法的适用情况 (1)抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点: 一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法. (3)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去. 冲关针对训练 利用简单随机抽样,从n个个体中抽取一个容量为10的样本,若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( ) A. B. C. D. 答案 C 解析 根据题意,=,解得n=28.故每个个体被抽到的概率为=.故选C. 题型2 系统抽样 (2017·徐州模拟)从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量为5的一个样本,若编号为42的产品在样本中,则该样本中产品的最小编号为( ) A.8 B.10 C.12 D.16 确定分段间隔,再利用间隔不变解题. 答案 B 解析 从80件产品中用系统抽样的方法抽取5件,则可将这80件产品分成5组,每组16件,每组抽取1件,而编号为42的产品在第3组,所以第1组所抽取产品的编号为42-16×2=10,故选B. [条件探究1] 把典例中条件“若编号为42的产品在样本中”改为“已知编号为10,a,42,b,74号在样本中”,求a+b. 解 由典例中解析易知编号构成首项为10,公差为16的等差数列,易求得a=26,b=58,故a+b=84. [条件探究2] 把典例中条件“若编号为42的产品在样本中”改为“抽到产品的编号之和为185”,则抽到的最小编号是多少? 解 利用等差数列前n项和公式S5=5a1+·16=185,得a1=5. 方法技巧 系统抽样的注意点 1.系统抽样适用的条件是总体容量较大,样本容量也较大. 2.若不改变抽样规则,则所抽取的号码构成一个等差数列,其首项为第一组所抽取的号码,公差为样本间隔.故问题可转化为等差数列问题解决. 3.抽样规则改变,应注意每组抽取一个个体这一特性不变. 4.如果总体容量N不能被样本容量n整除,可随机地从总体中剔除余数,然后再按系统抽样的方法抽样,其中起始编号的确定应用简单随机抽样的方法. 冲关针对训练 (2018·广东肇庆模拟)一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码的个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是( ) A.63 B.64 C.65 D.66 答案 A 解析 由题设知,若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.故选A. 题型3 分层抽样 (2015·北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( ) 类别 人数 老年教师 900 中年教师 1800 青年教师 1600 合计 4300 A.90 B.100 C.180 D.300 根据抽样比列方程. 答案 C 解析 设该样本中的老年教师人数为x,由题意及分层抽样的特点得=,故x=180.故选C. (2018·西安摸底考试)某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为( ) A.800 B.1000 C.1200 D.1500 答案 C 解析 因为a,b,c成等差数列,所以2b=a+c.所以=.所以第二车间抽取的产品数占抽样产品总数的.根据分层抽样的性质,可知第二车间生产的产品数占总数的,即为×3600=1200.故选C. 方法技巧 分层抽样问题类型及解题思路 1.求某层应抽个体数量:按该层所占总体的比例计算. 2.已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算. 3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比==”. 提醒:分层抽样时,每层抽取的个体可以不一样多,但必须满足抽取ni=n·(i=1,2,…,k)个个体(其中i是层数,n是抽取的样本容量,Ni是第i层中个体的个数,N是总体容量). 冲关针对训练 (2014·广东高考)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A.200,20 B.100,20 C.200,10 D.100,10 答案 A 解析 由题意可得该地区共有中小学生10000人,故样本容量为10000×2%=200,由分层抽样知应抽取高中学生的人数为200×=40,其中近视人数为40×50%=20,故选A. 1.(2014·湖南高考)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( ) A.p1=p2查看更多
相关文章
- 当前文档收益归属上传用户