人教版高三数学总复习课时作业41
课时作业41 合情推理与演绎推理
一、选择题
1.下列推理过程是类比推理的为( )
A.人们通过大量试验得出抛硬币出现正面的概率为0.5
B.科学家通过研究老鹰的眼睛发明了电子鹰眼
C.通过检验溶液的pH值得出溶液的酸碱性
D.数学中由周期函数的定义判断某函数是否为周期函数
解析:由类比推理的概念可知.
答案:B
2.已知△ABC中,∠A=30°,∠B=60°,求证:a
2,f(23)>,f(24)>3,f(25)>,推测当n≥2时,有________.
解析:因为f(22)>,f(23)>,f(24)>,f(25)>,所以当n≥2时,有f(2n)>.
答案:f(2n)>
三、解答题
10.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S=×底×高;(3)三角形的中位线平行于第三边且等于第三边的 ;……
请类比上述性质,写出空间中四面体的相关结论.
解:由三角形的性质,可类比得空间四面体的相关性质为:
(1)四面体的任意三个面的面积之和大于第四个面的面积;
(2)四面体的体积V=×底面积×高;
(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的.
11.给出下面的数表序列:
其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).
解:表4为
1 3 5 7
4 8 12
12 20
32
它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.
将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.
1.
如下图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则+++…+=( )
A. B. C. D.
解析:由图案可得第n个图案中的点数为3n,则an=3n-3,∴==-,∴+++…+=++…+=1-=,故选B.
答案:B
2.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )
A.2 907 B.2 111
C.2 012 D.2 090
解析:依题意,设位于三角形内的最小数是n,其中n被8除后的余数必是3,4,5,6之一,则这九个数的和等于n+3(n+8)+5(n
+16)=9n+104.令9n+104=2 012,得n=212,且n=212被8除后的余数是4.
答案:C
3.观察分析下表中的数据:
多面体
面数(F)
顶点数(V)
棱数(E)
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
猜想一般凸多面体中F,V,E所满足的等式是________.
解析:由给出的数据归纳可得出F+V-E=2.
答案:F+V-E=2
4.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
解:(1)选择②式,计算如下:
sin215°+cos215°-sin15°cos15°=1-sin30°=.
(2)归纳三角恒等式
sin2α+cos2(30°-α)-sinαcos(30°-α)=.
证明如下:
sin2α+cos2(30°-α)-sinαcos(30°-α)
=+-sinα(cos30°cosα+sin30°sinα)
=-cos2α++(cos60°cos2α+sin60°sin2α)-sinαcosα-sin2α
=-cos2α++cos2α+sin2α-sin2α-(1-cos2α)
=1-cos2α-+cos2α=.