- 2021-06-16 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届浙江新高考数学一轮复习高效演练分层突破:第十章 6 第6讲 离散型随机变量及其分布列
[基础题组练] 1.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于( ) A.0 B. C. D. 解析:选C.设X的分布列为 X 0 1 P p 2p 即“X=0”表示试验失败,“X=1”表示试验成功.由p+2p=1,得p=,故应选C. 2.设随机变量Y的分布列为 Y -1 2 3 P m 则“≤Y≤”的概率为( ) A. B. C. D. 解析:选C.依题意知,+m+=1,则m=. 故P=P(Y=2)+P(Y=3)=+=. 3.设随机变量X的概率分布列如下表所示: X 0 1 2 P a 若F(x)=P(X≤x),则当x的取值范围是[1,2)时,F(x)等于( ) A. B. C. D. 解析:选D.由分布列的性质,得a++=1,所以a=.而x∈[1,2),所以F(x)=P(X≤x)=+=. 4.已知离散型随机变量X的分布列为 X 0 1 2 P 0.5 1-2q q 则P(∈Z)=( ) A.0.9 B.0.8 C.0.7 D.0.6 解析:选A.由分布列性质得0.5+1-2q+q=1,解得 q=0.3,所以P(∈Z)=P(X=0)+P(X=1)=0.5+1-2×0.3=0.9,故选A. 5.抛掷2颗骰子,所得点数之和X是一个随机变量,则P(X≤4)=________. 解析:抛掷2颗骰子有36个基本事件, 其中X=2对应(1,1);X=3对应(1,2),(2,1);X=4对应(1,3),(2,2),(3,1).所以P(X≤4)=P(X=2)+P(X=3)+P(X=4)=++=. 答案: 6.已知随机变量ξ只能取三个值:x1,x2,x3,其概率依次成等差数列,则公差d的取值范围是________. 解析:设ξ取x1,x2,x3时的概率分别为a-d,a,a+d,则(a-d)+a+(a+d)=1,所以a=, 由得-≤d≤. 答案: 7.若离散型随机变量X的分布列为 X 0 1 P 9c2-c 3-8c 则常数c=________,P(X=1)=________. 解析:由分布列的性质知, 解得c=,故P(X=1)=3-8×=. 答案: 8.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X的分布列为________. 解析:X的所有可能值为0,1,2. P(X=0)==, P(X=1)==, P(X=2)==. 所以X的分布列为 X 0 1 2 P 答案: X 0 1 2 P 9.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X的可能取值为0,1,2,3. P(X=0)==;P(X=1)==; P(X=2)==;P(X=3)==. 所以X的分布列为 X 0 1 2 3 P (2)至少出现两次正面向上的概率为 P(X≥2)=P(X=2)+P(X=3)=+=. 10.(2020·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张. (1)求该顾客中奖的概率; (2)求该顾客获得的奖品总价值X(元)的分布列. 解:(1)该顾客中奖的概率P=1-=1-=. (2)X的所有可能取值为0,10,20,50,60,且 P(X=0)==,P(X=10)==, P(X=20)==,P(X=50)==, P(X=60)==. 故X的分布列为 X 0 10 20 50 60 P [综合题组练] 1.(2020·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球. (1)求取出的3个球编号都不相同的概率; (2)记X为取出的3个球中编号的最小值,求X的分布列. 解:(1)设“取出的3个球编号都不相同”为事件A,“取出的3个球中恰有两个球编号相同”为事件B,则P(B)===,所以P(A)=1-P(B)=. (2)X的取值为1,2,3,4, P(X=1)==,P(X=2)==, P(X=3)==,P(X=4)==. 所以X的分布列为 X 1 2 3 4 P 2.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队. (1)求小波参加学校合唱团的概率; (2)求X的分布列. 解:(1)从8个点中任取两点为向量终点的不同取法共有C=28(种),当X=0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P(X=0)==. (2)两向量数量积X的所有可能取值为-2,-1,0,1,X=-2时,有2种情形;X=1时,有8种情形;X=-1时,有10种情形.所以X的分布列为 X -2 -1 0 1 P 3.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X表示终止时所需要的取球次数. (1)求袋中原有白球的个数; (2)求随机变量X的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n个白球, 由题意知===, 所以n(n-1)=6,解得n=3或n=-2(舍去). 即袋中原有3个白球. (2)由题意知X的可能取值为1,2,3,4,5. P(X=1)=; P(X=2)==; P(X=3)==; P(X=4)==; P(X=5)==. 所以取球次数X的分布列为 X 1 2 3 4 5 P (3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A, 则P(A)=P(X=1或X=3或X=5). 因为事件“X=1”“X=3”“X=5”两两互斥, 所以P(A)=P(X=1)+P(X=3)+P(X=5)=++=.查看更多