河北省衡水中学2018-2019学年上学期期中考试高三数学理科

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

河北省衡水中学2018-2019学年上学期期中考试高三数学理科

河北省衡水中学2018—2019学年上学期期中考试 高三数学(理)‎ 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.设集合,集合,则( )‎ A. B. C. D.‎ ‎2.已知为虚数单位,实数满足,则( )‎ A.1 B. C. D.‎ ‎3.如图,已知,,,,则( )‎ A. B. C. D. ‎ ‎4.设,,,,则( )‎ A. B. C. D.‎ ‎5.已知命题若且,则;命题,使,则下列命题中为真命题的是( )‎ A. B. C. D.‎ ‎6.设是公差不为0的等差数列,满足,则的前10项和( )‎ A.-10 B.-5 C. 0 D.5‎ ‎7.某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( )‎ A. 2 B.4 C. D.‎ ‎8.过双曲线的右顶点作轴的垂线,与的一条渐近线相交于点,若以的右焦点为圆心、半径为4的圆经过两点(为坐标原点),则双曲线的方程为( )‎ A. B. C. D.‎ ‎9.已知过点作曲线的切线有且仅有两条,则实数的取值范围是( )‎ A. B. C. D.‎ ‎10.已知(其中,),,的最小值为,,将的图像向左平移个单位得,则的单调递减区间是( )‎ A. B. ‎ C. D.‎ ‎11.焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )‎ A.或 B. ‎ C. 或 D.‎ ‎12.已知半径为3的球内有一个内接四棱锥,四棱锥的侧棱长都相等,底面是正方形,当四棱锥的体积最大时,它的底面边长等于( )‎ A. B. C. D.‎ 二、填空题(每题5分,满分20分,将答案填在答题纸上)‎ ‎13.用表示空间中三条不同的直线,表示平面,给出下列命题:‎ ‎①若,,则;‎ ‎②若,,则;‎ ‎③若,,则;‎ ‎④若,,则.‎ 其中真命题的序号是 .(请将所有正确命题的序号都填上)‎ ‎14.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 .‎ ‎(参考数据:,)‎ ‎15.已知实数满足,若的最大值为5,则正数的值为 .‎ ‎16.费马点是指三角形内到三角形三个顶点距离之和最小的点,当三角形三个内角均小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为,根据以上性质,函数的最小值为 .‎ 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎17. 已知数列为等差数列,首项,公差,若成等比数列,且,,.‎ ‎(1)求数列的通项公式;‎ ‎(2)设,求和:.‎ ‎18. 如图,在中,边上的中线长为3,且,.‎ ‎(1)求的值;‎ ‎(2)求及外接圆的面积.‎ ‎19. 如图,在四棱锥中,底面为平行四边形,已知,,于.‎ ‎(1)求证:;‎ ‎(2)若平面平面,且,求二面角的余弦值.‎ ‎20. 已知椭圆的左、右焦点分别是,离心率,过点的直线交椭圆于两点,的周长为16.‎ ‎(1)求椭圆的方程;‎ ‎(2)已知为原点,圆与椭圆交于两点,点为椭圆上一动点,若直线与轴分别交于两点,求证:为定值.‎ ‎21. 已知函数.‎ ‎(1)若函数有零点,求实数的取值范围;‎ ‎(2)证明:当时,.‎ 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.‎ ‎22.选修4-4:坐标系与参数方程 在平面直角坐标系中,曲线,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.‎ ‎(1)求曲线,的极坐标方程;‎ ‎(2)在极坐标系中,射线与曲线,分别交于两点(异于极点),定点,求的面积.‎ ‎23.选修4-5:不等式选讲 已知函数,.‎ ‎(1)当时,若的最小值为3,求实数的值;‎ ‎(2)当时,若不等式的解集包含,求实数的取值范围.‎
查看更多

相关文章

您可能关注的文档