- 2021-06-15 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习北师大版点线圆的位置关系作业
1.(2014浙江文,5,5分)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( ) A.-2 B.-4 C.-6 D.-8 答案 B 2.(2015浙江,19,15分)如图,已知抛物线C1:y=x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点. (1)求点A,B的坐标; (2)求△PAB的面积. 注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点. 解析 (1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t), 由消去y,整理得x2-4kx+4kt=0, 由于直线PA与抛物线相切,得k=t. 因此,点A的坐标为(2t,t2). 设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故 解得 因此,点B的坐标为. (2)由(1)知|AP|=t·, 和直线PA的方程tx-y-t2=0. 点B到直线PA的距离是d=, 设△PAB的面积为S(t),所以S(t)= |AP|·d=. 评析 本题主要考查抛物线的几何性质,直线与圆的位置关系,直线与抛物线的位置关系等基础知识.考查解析几何的基本思想方法和综合解题能力. B组 统一命题、省(区、市)卷题组 考点 直线与圆、圆与圆的位置关系 1.(2018课标全国Ⅲ理,6,5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( ) A.[2,6] B.[4,8] C.[,3] D.[2,3] 答案 A 2.(2015课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( ) A.2 B.8 C.4 D.10 答案 C 3.(2018江苏,12,5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若·=0,则点A的横坐标为 . 答案 3 4.(2018课标全国Ⅰ文,15,5分)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|= . 答案 2 5.(2016课标全国Ⅲ,16,5分)已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=2,则|CD|= . 答案 4 C组 教师专用题组 考点 直线与圆、圆与圆的位置关系 1.(2015重庆,8,5分)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=( ) A.2 B.4 C.6 D.2 答案 C 2.(2015广东,5,5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( ) A.2x+y+5=0或2x+y-5=0 B.2x+y+=0或2x+y-=0 C.2x-y+5=0或2x-y-5=0 D.2x-y+=0或2x-y-=0 答案 A 3.(2014江西,9,5分)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为( ) A.π B.π C.(6-2)π D.π 答案 A 4.(2017江苏,13,5分)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若·≤20,则点P的横坐标的取值范围是 . 答案 [-5,1] 5.(2015江苏,10,5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为 . 答案 (x-1)2+y2=2 6.(2015湖北,14,5分)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2. (1)圆C的方程为 ; (2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论: ①=;②-=2;③+=2. 其中正确结论的序号是 .(写出所有正确结论的序号) 答案 (1)(x-1)2+(y-)2=2 (2)①②③ 7.(2014湖北,12,5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2= . 答案 2 8.(2014重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= . 答案 4± 9.(2014江苏,9,5分)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为 . 答案 10.(2014课标Ⅱ,16,5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是 . 答案 [-1,1] 11.(2013浙江文,13,4分)直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于 . 答案 4 12.(2015课标Ⅰ,20, 12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点. (1)求k的取值范围; (2)若·=12,其中O为坐标原点,求|MN|. 解析 (1)由题设,可知直线l的方程为y=kx+1. 因为l与C交于两点,所以<1. 解得查看更多