- 2021-06-15 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017高二上学期期中考试理科数学试题4
2017 高二(上)期中试题 数 学(理科) 注意事项: 1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为100分,考试时间为100分钟. 2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡上对应题目的答案空格内.考试结束后,交回答题卡. 一、填空题(本大题共14小题,每小题3分,共42分.请把答案填写在答题卡相应位置上) 1.已知空间一点A的坐标是(5, 2, -6),P点在x轴上,若PA=7,则P点的坐标是 . 2.命题“∃x∈[-1,1],x2-3x+1<0”的否定是 . 3.圆C1:(x+1)2+(y+1)2=1和圆C2:x2+y2+4x-4y-1=0的位置关系是 . 4.已知点A(-1, 0),B(1, 0) ,若点C满足条件AC=2BC,则点C的轨迹方程是 . 5.过点(2,-2)的抛物线的标准方程是 . 6.若点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是 . 7.已知曲线C :y2-4x2 n=0,则“n为正奇数”是“曲线C关于y轴对称”的 条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中的一个). 8.椭圆+=1上一点P与椭圆的两个焦点F1,F2的连线互相垂直,则△PF1F2的面积是 . 9.已知双曲线的中心是原点,焦点到渐近线的距离为2,一条准线方程为y=-1,则其渐近线方程为 . 10.圆心在y轴上,且与直线2x+3y-10=0相切于点A(2,2)的圆的方程是 . 11.若“(x-a)(x-a-1)<0”是“1<2x<16”的充分不必要条件,则实数a的取值范围是 . 12.直线y=x+b与曲线x+=0恰有一个公共点,则b的取值范围是 . 13.曲线 =(2-x) 的焦点是双曲线C的焦点,点(3,-)在C上,则C的方程是 . 14.已知圆 (x-a)2+(y-b)2=4过坐标原点,则a+b的最大值是 . 二、解答题(本大题共6小题,共计58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)写出命题“若直线l的斜率为-1,则直线l在两坐标轴上截距相等”的逆命题,否命题与逆否命题,并分别指出这三个命题是真命题还是假命题? 16.(本小题满分9分)某企业计划生产A,B两种产品.已知生产每吨A产品需3名工人,耗电4 kW,可获利润7万元;生产每吨B产品需10名工人,耗电5 kW,可获利润12万元,设分别生产A,B两种产品x吨,y吨时,获得的利润为z万元. (1)用x,y表示z的关系式是 ; (2)该企业有工人300名,供电局只能供电200 kW,求x,y分别是多少时,该企业才能获得最大利润,最大利润是多少万元? 17.(本小题满分10分)已知直线l:2x+y+4=0与圆C:x2+y2+2x-4y+1=0的两个交点分别为A,B. (1)求A,B的坐标; (2)点D在x轴上,使三角形ABD为等腰三角形,求点D的坐标. 18.(本小题满分10分)设直线l的方程是x+my+2=0,圆O的方程是x2 +y2=r2 (r >0). (1)当m取一切实数时,直线l与圆O都有公共点,求r的取值范围; (2)r=4时,求直线l被圆O截得的弦长的取值范围. 19.(本小题满分10分)已知双曲线C1:-8y2=1(a>0)的离心率是,抛物线C2:y2=2px的准线过C1的左焦点. (1)求抛物线C2的方程; (2)若A(x1,y1),B(x2,y2),C(x3,4)是C2上三点,且CA⊥CB,证明:直线AB过定点,并求出这个定点的坐标. 20.(本小题满分11分)椭圆+=1(a>b>0)的中心是O,左,右顶点分别是A,B,点A到右焦点的距离为3,离心率为,P是椭圆上与A,B不重合的任意一点. (1) 求椭圆方程; (2)设Q(0,-m)(m>0)是y轴上定点,若当P点在椭圆上运动时PQ最大值是,求m的值. 高二(文)数学参考答案 一、填空题(每小题3分,共42分) 1.(8,0,0)或(2,0,0) 2.∀x∈[-1,1],x2-3x+1≥0 3.相交 4.3x2+3y2-10x+3=0 5.y2=2x或x2=-2y 6.(,+∞) 7.充分不必要 8.24 9.y=±x 10.x2+(y+1)2=13 11.[0,3] 12.{b|-1≤b<1,或b=} 13.3x2-y2=1 14.2 二、解答题(本大题有6小题,共58分) 15.逆命题 若直线l在两坐标轴上截距相等,则直线l的斜率为-1;该命题是假命题; ……3分 否命题 若直线l的斜率不为-1,则直线l在两坐标轴上截距不相等;该命题是假命题;……6分 逆否命题 若直线l在两坐标轴上截距不相等,则直线l的斜率为不-1;该命题是真命题.……8分 (说明,对一个得3分,对两个得6分,对三个得8分) 16.(1)z=7x+12 y;……2分 (2)根据题意得……4分 由得……5分 记点A(20,24). (作出可行域)如右图,当斜率为- 的直线经过点A(20,24)时,在y轴上的截距最大. ……8分 此时,z取得最大值,为(万元). 所以,x,y分别是20,24时,该企业才能获得最大利润,最大利润是万元.……………………………9分 17.(1)由可得两交点的坐标不妨分别为A (-,),B (-3,2).……3分 (2) ①当DA=DB时,易得直线l的斜率为-2,线段AB的垂直平分线的斜率为,中点为 (-,), 所以线段AB的垂直平分线的方程为x-2y+5=0. 所以点D的坐标为(-5,0).……………………………………………………………………………6分 ②当DA=BA时,以A 为圆心,AB为半径的圆A的方程为(x+) 2+(y-) 2=. 圆A与x轴的交点为(-+,0)和(--,0).………………………………………9分 ③当BA=BD时,以B为圆心,AB为半径的圆与x轴无交点.……………………………………10分 所以,点D的坐标为 (-5,0)或(-+,0)或(--,0) . 18.(1)直线l过定点(-2,0),当m取一切实数时,直线l与圆O都有公共点等价于点(-2,0)在圆O内或在圆O上,……………………………………………………………………………………2分 所以r的取值范围是[,+∞);………………………………………………………………………5分 (其他解法,类比赋分,如≤r恒成立,等) (2)设坐标为(-2,0) 的点为点A, 当直线l与OA垂直时,直线l被圆O截得的弦长为4;………………………………………………7分 x轴被圆O截得的弦长为8; ………………………………………………8分 直线l被圆O截得的弦长的取值范围是[4,8).………………………………………………………10分 (其他解法,类比赋分,如弦长2取值范围是[4,8),等) 19. (1)因为双曲线C1:-8y2=1(a>0)的离心率是, 所以a2=,c2=, …………………………………………………………2分 所以抛物线C2:y2=2px的准线方程是x=-, 所以p=1,抛物线C2的方程是y2=2x. ………………………………………………4分 (2)不妨设C(8,4), (第一类解法) 设AC的斜率为k,则直线AC的方程是y-4=k(x-8), x=代入并整理,得ky2-2y+8-8k=0, 方程的两根是4和-4,所以y1=-4,x1=, A点的坐标是(,-4), 同理可得B点的坐标(2(2+k)2,-2k-4), ………………………………………………7分 直线AB的斜率KAB==, 直线AB的方程是y-(-2k-4)=[x-2(2+k)2], 即y=(x-10)-4, ………………………………………………9分 直线AB过定点,定点坐标是(10,-4). ………………………………………………10分 (第二类解法) 因为A(x1,y1),B(x2,y2)在C2上, 所以x1=,x2=.显然,y1≠4, y2≠4,y1+y2≠0. 因为CA⊥CB,所以(-8)(-8)+(y1-4)( (y2-4)=0. 所以(y1+4)(y2+4)=-4,y1y2=-4(y1+y2)-20 (*), …………………………………6分 直线AB的方程是y-y1=(x-), 解法一 直线AB的方程即y=x+, 将(*)式代入,得y=(x-10)-4, ………………………………………………9分 所以直线AB过定点,这个定点的坐标是(10,-4). ………………………………10分 解法二 由(*)得y2=- . 把y2=- 代入直线方程,整理得y12(-y-4)+y1(2x-10)+8 x+20 y=0.…………8分 由得 所以直线AB过定点,这个定点的坐标是(10,-4). …………………………10分 解法三 由(*)式得y2=- . 可得 进而得A(18,-6),B(2,-2), 进而得直线AB:x+4y+6=0.(其它方程类比赋分) ………………………………………7分 由(*)式得还可得 进而得A(,-3) ,B(32,-8) , 进而得另一直线AB:2x+11y+24=0. ………………………………………………8分 由得 因为适合直线AB的方程(y=x+), ……………………………………9分 所以直线AB过定点,这个定点的坐标是(10,-4). ……………………………………10分 20.(1) 由题意得 解得 所以,所求方程为+ =1.………………………………………………………………………4分 (2) PQ2=x02+(y0+m)2=-(y0-3m)2+4m2+4,………………………………………………………6分 ①当0查看更多