- 2021-06-15 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习人教A版(文)8-3立体几何学案
8.3 空间点、直线、平面之间的位置关系 最新考纲 考情考向分析 1.理解空间直线、平面位置关系的定义. 2.了解可以作为推理依据的公理和定理. 3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的空间想象能力和逻辑推理能力. 1.四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 2.直线与直线的位置关系 (1)位置关系的分类 (2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角). ②范围:. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 知识拓展 1.唯一性定理 (1)过直线外一点有且只有一条直线与已知直线平行. (2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直. 2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ ) (2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × ) (3)两个平面ABC与DBC相交于线段BC.( × ) (4)经过两条相交直线,有且只有一个平面.( √ ) (5)没有公共点的两条直线是异面直线.( × ) (6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.( × ) 题组二 教材改编 2.[P52B组T1(2)]如图所示,已知M,N分别是正方体ABCD—A1B1C1D1中BB1和B1C1的中点,则MN与CD1所成的角为________. 答案 60° 解析 连接AD1,AC,因为M,N分别是正方体ABCD—A1B1C1D1中BB1和B1C1的中点,所以AD1∥MN,故∠AD1C为MN与CD1所成的角或其补角,由于AC=AD1=D1C,故∠AD1C=60°,则MN与CD1所成的角为60°. 3.[P45例2]如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则 (1)当AC,BD满足条件________时,四边形EFGH为菱形; (2)当AC,BD满足条件________时,四边形EFGH为正方形. 答案 (1)AC=BD (2)AC=BD且AC⊥BD 解析 (1)∵四边形EFGH为菱形, ∴EF=EH,故AC=BD. (2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH, ∵EF綊AC,EH綊BD,∴AC=BD且AC⊥BD. 题组三 易错自纠 4.若P是两条异面直线l,m外的任意一点,则( ) A.过点P有且仅有一条直线与l,m都平行 B.过点P有且仅有一条直线与l,m都垂直 C.过点P有且仅有一条直线与l,m都相交 D.过点P有且仅有一条直线与l,m都异面 答案 B 解析 A项,设过点P的直线为n,若n与l,m都平行,则l,m平行,与l,m异面矛盾,A错; B项,l,m只有唯一的公垂线,而过点P与公垂线平行的直线只有1条,B对; C项,如图所示,在正方体ABCD—A′B′C′D′中,设AD为直线l,A′B′为直线m,若点P在P1点,显然无法作出直线与两直线都相交,C错; D项,若P在P2点,则直线CC′及D′P2均与l,m异面,D错. 5.下列命题正确的有________.(填序号) ①若直线与平面有两个公共点,则直线在平面内; ②若直线l上有无数个点不在平面α内,则l与平面α平行; ③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线; ④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交; ⑤若直线l与平面α平行,则l与平面α内的直线平行或异面. 答案 ①⑤ 解析 ①正确; ②错误,直线l与平面α相交时,仍有无数个点不在平面α内; ③错误,直线l与平面α内过该交点的直线不是异面直线; ④错误,另一条直线可能在该平面内;⑤正确. 6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______. 答案 3 解析 平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对. 题型一 平面基本性质的应用 典例 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证: (1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点. 证明 (1)如图,连接EF,CD1,A1B. ∵E,F分别是AB,AA1的中点,∴EF∥BA1. 又A1B∥D1C,∴EF∥CD1, ∴E,C,D1,F四点共面. (2)∵EF∥CD1,EF查看更多
相关文章
- 当前文档收益归属上传用户