- 2021-06-15 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2021届一轮复习人教版(文)第2章第6节 指数与指数函数学案
第六节 指数与指数函数 [最新考纲] 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,,的指数函数的图象.3.体会指数函数是一类重要的函数模型. 1.根式 (1)n次方根的概念 ①若xn=a,则x叫做a的n次方根,其中n>1且n∈N*.式子叫做根式,这里n叫做根指数,a叫做被开方数. ②a的n次方根的表示: (2)根式的性质 ①()n=a(n∈N*,n>1). 2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:a=(a>0,m,n∈N*,且n>1); ②负分数指数幂:a== (a>0,m,n∈N*,且n>1); ③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①aras=ar+s(a>0,r,s∈Q); ②(ar)s=ars(a>0,r,s∈Q); ③(ab)r=arbr(a>0,b>0,r∈Q). 3.指数函数的图象与性质 y=ax a>1 0<a<1 图象 定义域 R 值域 (0,+∞) 性质 过定点(0,1) 当x>0时,y>1; 当x<0时,0<y<1 当x>0时,0<y<1; 当x<0时,y>1 在R上是增函数 在R上是减函数 1.指数函数图象的画法 画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),. 2.指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b>0.由此我们可得到以下规律:在第一象限内,指数函数y=ax(a>0,a≠1)的图象越高,底数越大. 3.指数函数y=ax(a>0,a≠1)的图象和性质跟a的取值有关,要特别注意应分a>1与0<a<1来研究. 一、思考辨析(正确的打“√”,错误的打“×”) (1)=()n=a. ( ) (2)(-1)=(-1)=. ( ) (3)函数y= (a>1)的值域是(0,+∞). ( ) (4)若am<an(a>0且a≠1),则m<n. ( ) [答案] (1)× (2)× (3)× (4)× 二、教材改编 1.若函数f(x)=ax(a>0,且a≠1)的图象经过点P,则f(-1)=________. [由题意知=a2,所以a=, 所以f(x)=,所以f(-1)==.] 2.化简(x<0,y<0)=________. [答案] -2x2y 3.已知,则a,b,c的大小关系是________. 考点1 指数幂的运算 指数幂运算的一般原则 (1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一. 考点2 指数函数的图象及应用 (1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象. (2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. (1)函数f(x)=ax-b的图象如图,其中a,b为常数,则下列结论正确的是( ) A.a>1,b<0 B.a>1,b>0 C.0<a<1,b>0 D.0<a<1,b<0 (2)若曲线y=|3x-1|与直线y=m有两个不同交点,则实数m的取值范围是________. (1)D (2)(0,1) [(1)由f(x)=ax-b的图象可以观察出,函数f(x)=ax-b在定义域上单调递减,所以0<a<1.函数f(x)=ax-b的图象是在f(x)=ax的基础上向左平移得到的,所以b<0.故选D. (2)曲线y=|3x-1|的图象是由函数y=3x的图象向下平移一个单位长度后,再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,而直线y=m的图象是平行于x轴的一条直线,它的图象如图所示,由图象可得,如果曲线y=|3x-1|与直线y=m有两个公共点,则m的取值范围是(0,1).] [母题探究] 1.(变条件)若本例(2)条件变为:方程3|x|-1=m有两个不同实根,则实数m的取值范围是________. (0,+∞) [作出函数y=3|x|-1与y=m的图象如图所示,数形结合可得m的取值范围是(0,+∞). ] 2.(变条件)若本例(2)的条件变为:函数y=|3x-1|+m的图象不经过第二象限,则实数m的取值范围是________. (-∞,-1] [作出函数y=|3x-1|+m的图象如图所示. 由图象知m≤-1,即m∈(-∞,-1].] 应用指数函数图象的技巧 (1)画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),. (2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除. (3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论. 1.函数f(x)=1-e|x|的图象大致是( ) A B C D A [f(x)=1-e|x|是偶函数,图象关于y轴对称,又e|x|≥1,∴f(x)≤0,符合条件的图象只有A.] 2.函数y=ax-b(a>0,且a≠1)的图象经过第二、三、四象限,则ab的取值范围是________. (0,1) [因为函数y=ax-b的图象经过第二、三、四象限,所以函数y=ax-b单调递减且其图象与y轴的交点在y轴的负半轴上.令x=0,则y=a0-b=1-b,由题意得解得故ab∈(0,1).] 3.已知实数a,b满足等式2 019a=2 020b,下列五个关系式: ①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b. 其中不可能成立的关系式有________(填序号). ③④ [作出y=2 019x及y=2 020x的图象如图所示,由图可知a>b>0,a=b=0或a<b<0时,有2 019a=2 020b,故③④不可能成立.] 考点3 指数函数的性质及应用 指数函数性质的应用主要是利用单调性解决相关问题,而指数函数的单调性是由底数a决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论. 比较指数式的大小 (1)已知a=20.2,b=0.40.2,c=0.40.6,则( ) A.a>b>c B.a>c>b C.c>a>b D.b>c>a (2)设函数f(x)=x2-a与g(x)=ax(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,则M=(a-1)0.2与N=0.1的大小关系是( ) A.M=N B.M≤N C.M<N D.M>N (1)A (2)D [(1)由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2 >0.40.6,即b>c.因为a=20.2>1,b=0.40.2<1,所以a>b.综上,a>b>c. (2)因为f(x)=x2-a与g(x)=ax(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,所以a>2,所以M=(a-1)0.2>1,N=0.1<1,所以M>N.故选D.] 指数式的大小比较,依据的就是指数函数的单调性,原则上化为同底的指数式,并要注意底数范围是(0,1)还是(1,+∞),若不能化为同底,则可化为同指数,或利用中间变量比较,如本例(1). 解简单的指数方程或不等式 (1)已知函数f(x)=a+的图象过点,若-≤f(x)≤0,则实数x的取值范围是________. (2)方程4x+|1-2x|=11的解为________. (1) (2)x=log23 [(1)∵f(x)=a+的图象过点, ∴a+=-,即a=-. ∴f(x)=-+. ∵-≤f(x)≤0, ∴-≤-≤0, ∴≤≤, ∴2≤4x+1≤3, 即1≤4x≤2, ∴0≤x≤. (2)当x≥0时,原方程化为4x+2x-12=0,即(2x)2+2x-12=0. ∴(2x-3)(2x+4)=0, ∴2x=3,即x=log23. 当x<0时,原方程化为4x-2x-10=0. 令t=2x,则t2-t-10=0(0<t<1). 由求根公式得t=均不符合题意,故x<0时,方程无解.] (1)af(x)=ag(x)⇔f(x)=g(x). (2)af(x)>ag(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x). (3)有些含参指数不等式,需要分离变量,转化为求有关函数的最值问题. 与指数函数有关的复合函数的单调性 函数f(x)=的单调减区间为________. (-∞,1] [设u=-x2+2x+1,∵y=在R上为减函数,所以函数f(x)=的减区间即为函数u=-x2+2x+1的增区间. 又u=-x2+2x+1的增区间为(-∞,1], 所以f(x)的减区间为(-∞,1].] [逆向问题] 已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上单调递增,则m的取值范围是________. (-∞,4] [令t=|2x-m|,则t=|2x-m|在区间上单调递增,在区间上单调递减.而y=2t在R上单调递增,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].] 求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断. 指数函数性质的综合应用 (1)函数f(x)=a+(a,b∈R)是奇函数,且图象经过点,则函数f(x)的值域为( ) A.(-1,1) B.(-2,2) C.(-3,3) D.(-4,4) (2)若不等式1+2x+4x·a>0在x∈(-∞,1]时恒成立,则实数a的取值范围是________. (1)A (2) [(1)函数f(x)为奇函数,定义域是R,则f(0)=a+=0①,函数图象过点,则f(ln 3)=a+=②.结合①②可得a=1,b=-2,则f(x)=1-.因为ex>0,所以ex+1>1,所以0<<2,所以-1<1-<1,即函数f(x)的值域为(-1,1). (2)从已知不等式中分离出实数a,得a>-.因为函数y=和y=在R上都是减函数,所以当x∈(-∞,1]时,≥,≥,所以+≥+=,从而得≤-.故实数a的取值范围为a>-.] 指数函数的综合问题,主要涉及单调性、奇偶性、最值问题,应在有关性质的基础上,结合指数函数的性质进行解决,而指数函数性质的重点是单调性,注意利用单调性实现问题的转化. 1.函数y=的值域是( ) A.(-∞,4) B.(0,+∞) C.(0,4] D.[4,+∞) C [设t=x2+2x-1,则y=. 因为0<<1,所以y=为关于t的减函数. 因为t=(x+1)2-2≥-2,所以0<y=≤-2=4,故所求函数的值域为(0,4].] 2.已知实数a≠1,函数f(x)=若f(1-a)=f(a-1),则a的值为________. [当a<1时,41-a=21,所以a=;当a>1时,代入可知不成立,所以a的值为.] 3.设函数f(x)=若f(a)<1,则实数a的取值范围是________. (-3,1) [当a<0时,不等式f(a)<1可化为-7<1,即a<8,即<, ∴a>-3.又a<0,∴-3<a<0. 当a≥0时,不等式f(a)<1可化为<1. ∴0≤a<1,综上,a的取值范围为(-3,1).]查看更多