- 2021-04-12 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020-《公倍数和公因数》教学反思范文(精选3篇)
2020-《公倍数和公因数》教学反思范文(精选3篇) 《公倍数和公因数》教学反思1 去年教学《公倍数和公因数》这一单元时,依照学生预习、阅读课本进行教学,老师没有作过多的讲解,从学生的练习反馈中,部分学生求两个数的最大公因数和最小公倍数错误百出,反思教学后,觉得用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……调查询问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“太麻烦了”。 今年教学《公倍数和公因数》这一单元时,我在去年教学《公倍数和公因数》的基础上作了一些改进: 一、仍然是将预习前置。 二、动手操作,想象延伸。 让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。 用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。 学生分组操作,用除法算式把不同的摆法写出来。 提问:通过刚才的活动,你们发现了什么? 以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的理解。 思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。 三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。 四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况: (1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数; (2)三种最大公因数是1,最小公倍数是两数乘积的.情况(“互质数”这个概念学生没有学到): ①两个不同的素数; ②两个连续的自然数; ③1和任何自然数。 课后反思: 一、预习后的课堂教学,还要教,直接放手要出问题。 二、介绍一下短除法是有必要的。但不能直接按传统的教学思路以短除法求最大公因数和最小公倍数简单代替列举法。 《公倍数和公因数》教学反思2 《公倍数和公因数》的教学已接近尾声,但练习反馈,部分学生求两个数的最大公因数和最小公倍数错误百出,细细思量,用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……而且去问问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“烦”,“很烦”,“太麻烦了”。 在了解了学生的感受以后,我又重新通过练习概括出了一些特殊情况: (1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数; (2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到): ①两个不同的素数; ②两个连续的自然数; ③1和任何自然数。 另外,我又结合教材后面的“你知道吗?” ,指导了一下用短除法求两个数的最小公倍数和最大公因数的方法。在完成练习时,让学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢。 想来想去,还是真得很怀念旧教材上的“短除法”。 《公倍数和公因数》教学反思3 公因数和公倍数的学习是五下教材的两个重要概念,新教材对这部分内容作了化解难点,个别击破的办法,如何教学好这节内容,我在这次的新教材教学实践中作了如下尝试。 1、有效建立概念之间的结构链,形成条理化。 因数——公因数——最大公因数 倍数——公倍数——最大公倍数 这一单元主要是让学生在操作与交流活动中认识公倍数与最小公倍数,公因数与最大公因数,并激发学生的学习兴趣,培养学生的探究能力,因此在教学中我认为应特别注重概念间的系列反应,如倍数和因数是前面所学内容,新内容要在此基础上生根,必须复习旧知,联系生活,学习新知,围绕“公”,理解公倍数与公因数的概念,最小公倍数则通过实际生活中如第25页公交发车问题或参加游泳问题,来引发就是求最小公倍数来解决问题,最大公因数则通过长18厘米,宽12厘米的长方形来分最大的小正方形得到,教学中,我们必须注重学生对概念间的关系理解,从而形成条理化。 2、有效设计复习引入的问题串,引发思维性。 由6和8的因数有哪些?引起学生回忆怎么求一个数的因数?(一对一对地想、由小到大地有序地想)然后发现它们有1和2是相同的,即为公因数,用集合图(韦恩图)可以形象地描画出来,那么公因数有什么作用呢? 引出改编后的例3,要把长18厘米、宽12厘米的长方形剪成若干个相等的小正方形且没有剩余,有多少种剪法?最大的正方形是哪一种? 学生探究后发现,正方形的边长为1厘米、2厘米、3厘米、6厘米,反思:为什么?边长与12厘米和18厘米有什么关系? 从而想到18的因数有哪些,12的因数有哪些,18和12的公因数即为剪下的正方形的边长,而6则是比较特别的一个最大的数,即为最大公因数,到这里实际解决了例4。 再次提问:因数是怎么求的?公因数是什么意思?最大公因数是什么意思?怎么求两个数的最大公因数。回到教材,自学教材,思考问题。 3、有效使用教材与教辅资料,提高达成性。 什么时候阅读教材,例题等主体部分看不看?练习部分怎么用?都值得我们每节课去揣摩和研究。 在公因数的教学中,我既不完全脱离教材,又适当对教材进行了重组,改变了教材在课堂上的展示方式,整合了两道例题与习题10的展示与使用,让学生在“润物无声”的境界中,既学习了例题,又学习了新知,还不完全相同。为不让学生陌生,共同探讨之后又让学生回到教材,仔细阅读教材,寻找教材重点、难点,作好标记,可以当堂又经过了初步的复习。 书后的练一练以及练习五1—5题,由浅入深,重点训练学生寻找最大公因数的方法,无需改编,原题照用,可以直接在教材上作练习,当堂巩固所学新知,结合练习适当进行拓宽与技能的强化,可以直接实现当堂清。 查看更多