- 2021-04-15 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
XX年人教版初一上册数学知识点总结
XX年人教版初一上册数学知识点总结 本资料为woRD文档,请点击下载地址下载全文下载地址 人教版七年级数学上册期末总复习 第一章有理数 .有理数: 凡能写成形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; 有理数的分类: ① ② 注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 自然数0和正整数; a>0a是正数; a<0a是负数; a≥0a是正数或0a是非负数; a≤0a是负数或0a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; 相反数的和为0a+b=0a、b互为相反数. 相反数的商为-1. (5)相反数的绝对值相等 4.绝对值: 正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; 绝对值可表示为: 或 ; ; ; |a|是重要的非负数,即|a|≥0; 5.有理数比大小: (1)正数永远比0大,负数永远比0小; (2)正数大于一切负数; (3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若ab=1a、b互为倒数; 若ab=-1a、b互为负倒数. 等于本身的数汇总: 相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0 平方等于本身的数:0,1 立方等于本身的数:0,1,-1. 7.有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 0有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 1有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac.(简便运算) 2.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 3.有理数乘方的法则:(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数; 4.乘方的定义:(1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0; (4)据规律 底数的小数点移动一位,平方数的小数点移动二位. 5.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 6.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 7.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。 8.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。 第二章整式的加减 .单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。 2.单项式的系数与次数:单项式中的数字因数,称单项式的系数; 单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5. . 6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则: 系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号. 9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并) 0.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列). 第三章 一元一次方程 .等式:用“=”号连接而成的式子叫等式. 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3.方程:含未知数的等式,叫方程. 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质 去 分母----------同乘(不漏乘)最简公分母 去 括号----------注意符号变化 移 项----------变号(留下靠前) 合并同类项--------合并后符号 系数化为1---------除前面 0.列一元一次方程解应用题: (1)读题分析法:…………多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法:…………多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 1.列方程解应用题的常用公式: (1)行程问题: 距离=速度•时间 ; (2)工程问题: 工作量=工效•工时 ; 工程问题常用等量关系: 先做的+后做的=完成量 (3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (4)商品利润问题: 售价=定价 , ; 利润问题常用等量关系: 售价-进价=利润 (5)配套问题: (6)分配问题 第四章图形初步认识 (一)多姿多彩的图形 立体图形:棱柱、棱锥、圆柱、圆锥、球等. 、几何图形 平面图形:三角形、四边形、圆等. 主(正)视图---------从正面看 2、几何体的三视图侧(左、右)视图-----从左(右)边看 俯视图---------------从上面看 (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的. (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. (2)点动成线,线动成面,面动成体. (二)直线、射线、线段 、基本概念 图形 直线 射线 线段 端点个数 无 一个 两个 表示法 直线a 直线AB(BA) 射线AB 线段a 线段AB(BA) 作法叙述 作直线AB; 作直线a 作射线AB 作线段a; 作线段AB; 连接AB 延长叙述 不能延长 反向延长射线AB 延长线段AB; 反向延长线段BA 2、直线的性质 经过两点有一条直线,并且只有一条直线. 简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的大小比较方法 (1)度量法 (2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点. 图形: A m B 符号:若点m是线段AB的中点,则Am=Bm=AB,AB=2Am=2Bm. 6、线段的性质 两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离 连接两点的线段长度叫做两点的距离. 8、点与直线的位置关系 (1)点在直线上(2)点在直线外. (三)角 、角:由公共端点的两条射线所组成的图形叫做角. 2、角的表示法(四种): 3、角的度量单位及换算 4、角的分类 ∠β 锐角 直角 钝角 平角 周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360° 5、角的比较方法 (1)度量法 (2)叠合法 6、角的和、差、倍、分及其近似值 7、画一个角等于已知角 (1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 8、角的平线线 定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号: 9、互余、互补 (1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)余(补)角的性质:等角的补(余)角相等. 0、方向角 (1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向 查看更多